Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-26T22:39:12.502Z Has data issue: false hasContentIssue false

Decoupled motion planning of a mobile manipulator for precision agriculture

Published online by Cambridge University Press:  16 March 2023

Giovanni Colucci*
Affiliation:
DIMEAS - Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Torino, Italy
Luigi Tagliavini
Affiliation:
DIMEAS - Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Torino, Italy
Andrea Botta
Affiliation:
DIMEAS - Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Torino, Italy
Lorenzo Baglieri
Affiliation:
DIMEAS - Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Torino, Italy
Giuseppe Quaglia
Affiliation:
DIMEAS - Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Torino, Italy
*
*Corresponding author. E-mail: giovanni_colucci@polito.it

Abstract

Thanks to recent developments in service robotics technologies, precision agriculture (PA) is becoming an increasingly prominent research field, and several studies were made to present and outline how the use of mobile robotic systems can help and improve farm production. In this paper, the integration of a custom-designed mobile base with a commercial robotic arm is presented, showing the functionality and features of the overall system for crop monitoring and sampling. To this aim, the motion planning problem is addressed, developing a tailored algorithm based on the so-called manipulability index, that treats the base and robotic arm mobility as two independent degrees of motion; also developing an open source closed-form inverse kinematics algorithm for the kinematically redundant manipulator. The presented methods and sub-system, even though strictly related to a specific mobile manipulator system, can be adapted not only to PA applications where a mobile manipulator is involved but also to the wider field of assistive robotics.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kumar, S. A. and Ilango, P., “The impact of wireless sensor network in the field of precision agriculture: A review,” Wirel. Pers. Commun. 98(1), 685698 (2018). doi: 10.1007/s11277-017-4890-z.CrossRefGoogle Scholar
Bongiovanni, R. and Lowenberg-Deboer, J., “Precision agriculture and sustainability,” Precis. Agric. 5(4), 359387 (2004). doi: 10.1023/B:PRAG.0000040806.39604.aa.CrossRefGoogle Scholar
Meshram, A. T., Vanalkar, A. V., Kalambe, K. B. and Badar, A. M., “Pesticide spraying robot for precision agriculture: A categorical literature review and future trends,” J. Field Robot. 39(2), 153171 (2022). doi: 10.1002/rob.22043.CrossRefGoogle Scholar
United Nations, Department of Economic and Social Affairs, Population Division, “World Population Prospects 2022: Summary of Results,” In: UN DESA/POP/2022/TR/NO. 3 (2022).Google Scholar
Pierce, F. J. and Nowak, P., “Aspects of Precision Agriculture,” In: Advances in Agronomy (Sparks, D. L., ed.) (Academic Press, New York, 1999) pp. 185. 10.1016/S0065-2113(08)60513-1.Google Scholar
Crist, E., Mora, C. and Engelman, R., “The interaction of human population, food production, and biodiversity protection,” Science 356(6335), 260264 (2017). doi: 10.1126/science.aal2011.CrossRefGoogle ScholarPubMed
Griffin, T. W. and Yeager, E. A., “How Quickly Do Farmers Adopt Technology? A Duration Analysis,” In: Precision Agriculture’19 (2019).Google Scholar
Oliver, M., Bishop, T. and Marchant, B. (Eds.). Precision Agriculture for Sustainability and Environmental Protection (1st ed.) (Routledge, Abingdon, 2013). 10.4324/9780203128329.CrossRefGoogle Scholar
SDG 12. Ensure Sustainable Consumption and Production Patterns (n.d.). https://sdgs.un.org/goals/goal12 (accessed November 13, 2022).Google Scholar
Rosas, J. T. F., de Carvalho Pinto, F. A., de Queiroz, D. M., de Melo Villar, F. M., Valente, D. S. M. and Martins, R. N., “Coffee ripeness monitoring using a UAV-mounted low-cost multispectral camera,” Precis. Agric. 23(1), 300318 (2022). doi: 10.1007/s11119-021-09838-3.CrossRefGoogle Scholar
Mikula, K., Izydorczyk, G., Skrzypczak, D., Mironiuk, M., Moustakas, K., Witek-Krowiak, A. and Chojnacka, K., “Controlled release micronutrient fertilizers for precision agriculture - A review,” Sci. Total Environ. 712, 136365 (2020). doi: 10.1016/j.scitotenv.2019.136365.CrossRefGoogle ScholarPubMed
Chawade, A., van Ham, J., Blomquist, H., Bagge, O., Alexandersson, E. and Ortiz, R., “High-throughput field-phenotyping tools for plant breeding and precision agriculture,” Agronomy 9(5), 258 (2019). doi: 10.3390/agronomy9050258.CrossRefGoogle Scholar
Strisciuglio, N., Tylecek, R., Petkov, N., Bieber, P., Hemming, J., Henten, E., Sattler, T., Pollefeys, M., Gevers, T., Brox, T. and Fisher, R. B.. TrimBot2020: An Outdoor Robot for Automatic Gardening (2018).Google Scholar
Vinum Project. https://vinum-robot.eu/ (accessed on 09 January 2023).Google Scholar
Botterill, T., Paulin, S., Green, R., Williams, S., Lin, J., Saxton, V., Mills, S., Chen, X. and Corbett-Davies, S., “A robot system for pruning grape vines,” J. Field Robot. 34(6), 11001122 (2017). doi: 10.1002/rob.21680.CrossRefGoogle Scholar
Adamides, G., Katsanos, C., Constantinou, I., Christou, G., Xenos, M., Hadzilacos, T. and Edan, Y., “Design and development of a semi-autonomous agricultural vineyard sprayer: Human-robot interaction aspects,” J. Field Robot. 34(8), 14071426 (2017). doi: 10.1002/rob.21721.CrossRefGoogle Scholar
Goričanec, J., Kapetanovič, N., Vatavuk, I., Hrabar, I., Vasiljevič, G., Gledec, G., Stuhne, D., Bogdan, S., Orsag, M., Petrovič, T., Miškovič, N., Kovačič, Z., Kurtela, A., Bolotin, J., Kožul, V., Glavič, N., Antolovič, N., Anič, M., Kozina, B. and Cukon, M., “Heterogeneous Autonomous Robotic System in Viticulture and Mariculture - Project Overview,” In: 2021 16th International Conference on Telecommunications (2021) pp. 181188. 10.23919/Con_TEL52528.2021.9495969.CrossRefGoogle Scholar
Feng, Q., Wang, X., Wang, G. and Li, Z., “Design and Test of Tomatoes Harvesting Robot,” In: 2015 IEEE International Conference on Information and Automation (2015) pp. 949952. 10.1109/ICInfA.2015.7279423.CrossRefGoogle Scholar
De Preter, A., Anthonis, J. and De Baerdemaeker, J., “Development of a robot for harvesting strawberries,” IFAC-PapersOnLine 51(17), 1419 (2018). doi: 10.1016/j.ifacol.2018.08.054.CrossRefGoogle Scholar
Cavallone, P., Botta, A., Carbonari, L., Visconte, C. and Quaglia, G., “The Agri.q Mobile Robot: Preliminary Experimental Tests,” In: Advances in Italian Mechanism Science (Niola, V. and Gasparetto, A., eds.) (Springer, Cham, 2021) pp. 524532. 10.1007/978-3-030-55807-9_59.CrossRefGoogle Scholar
Botta, A. and Cavallone, P., “Robotics Applied to Precision Agriculture: The Sustainable Agri.q Rover Case Study,” In: Proceedings of I4SDG Workshop 2021 (Quaglia, G., Gasparetto, A., Petuya, V. and Carbone, G., ed.) (Springer, Cham, 2022) pp. 4150. 10.1007/978-3-030-87383-7_5.CrossRefGoogle Scholar
Colucci, G., Baglieri, L., Botta, A., Cavallone, P. and Quaglia, G., “Optimal Positioning of Mobile Manipulators Using Closed Form Inverse Kinematics,” In: International Conference on Robotics in Alpe-Adria Danube Region (Springer, Cham, 2022) pp. 184191.Google Scholar
Baillieul, J., Hollerbach, J. and Brockett, R., “Programming and Control of Kinematically Redundant Manipulators,” In: The 23rd IEEE Conference on Decision and Control (1984) pp. 768774. 10.1109/CDC.1984.272110.CrossRefGoogle Scholar
Vahrenkamp, N., Asfour, T., Metta, G., Sandini, G. and Dillmann, R., “Manipulability Analysis,” In: 12th IEEE-RAS International Conference on Humanoid Robots (Humanoids 2012) (IEEE, Osaka, Japan, 2012) pp. 568573. 10.1109/HUMANOIDS.2012.6651576.Google Scholar
Togai, M., “An application of the singular value decomposition to manipulability and sensitivity of industrial robots,” SIAM J. Algebr. Discrete Methods 7(2), 315320 (1986). doi: 10.1137/0607034.CrossRefGoogle Scholar
Chen, F., Selvaggio, M. and Caldwell, D. G., “Dexterous grasping by manipulability selection for mobile manipulator with visual guidance,” IEEE Trans. Ind. Inform. 15(2), 12021210 (2019). doi: 10.1109/TII.2018.2879426.CrossRefGoogle Scholar
Colucci, G., Botta, A., Tagliavini, L., Cavallone, P., Baglieri, L. and Quaglia, G., “Kinematic modeling and motion planning of the mobile manipulator Agri.Q for precision agriculture,” Machines 10(5), 321 (2022). doi: 10.3390/machines10050321.CrossRefGoogle Scholar
Carbonari, L., Botta, A., Cavallone, P., Tagliavini, L. and Quaglia, G., “Data-driven analysis of locomotion for a class of articulated mobile robots,” J. Mech. Robot. 13(5), (2021). doi: 10.1115/1.4051018.CrossRefGoogle Scholar
De Luca, A., Oriolo, G. and Giordano, P. R., “Kinematic Modeling and Redundancy Resolution for Nonholonomic Mobile Manipulators,” In: Proceedings 2006 IEEE International Conference on Robotics and Automation (2006) pp. 18671873. 10.1109/ROBOT.2006.1641978.Google Scholar
Neri, F., Scoccia, C., Carbonari, L., Palmieri, G., Callegari, M., Tagliavini, L., Colucci, G. and Quaglia, G., “Dynamic Obstacle Avoidance for Omnidirectional Mobile Manipulators,” In: Advances in Italian Mechanism (Niola, V., Gasparetto, A., Quaglia, G. and Carbone, G., eds.) (Springer, Cham, 2022) pp. 746754. 10.1007/978-3-031-10776-4_86.CrossRefGoogle Scholar
Mathworks. ROS Toolbox. https://it.mathworks.com/products/ros.html (accessed November 13, 2022).Google Scholar
Kuffner, J. J. and LaValle, S. M., “RRT-Connect: An Efficient Approach to Single-Query Path Planning,” In: Proceedings 2000 ICRA. Millennium Conference, IEEE International Conference on Robotics and Automation, vol. 2 (2000) pp. 9951001. 10.1109/ROBOT.2000.844730.Google Scholar