Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-12T18:57:46.710Z Has data issue: false hasContentIssue false

Autonomous control design of an unmanned aerial manipulator for contact inspection

Published online by Cambridge University Press:  07 November 2022

Junhao Zeng
Affiliation:
College of Electrical and Information Engineering, National Engineering Research Center of RVC, Hunan University, Changsha, China
Hang Zhong*
Affiliation:
School of Robotics, Hunan University, Changsha, China
Yaonan Wang
Affiliation:
College of Electrical and Information Engineering, National Engineering Research Center of RVC, Hunan University, Changsha, China
Shuangwen Fan
Affiliation:
College of Electrical and Information Engineering, National Engineering Research Center of RVC, Hunan University, Changsha, China
Hui Zhang
Affiliation:
School of Robotics, Hunan University, Changsha, China
*
*Corresponding author. E-mail: zhonghang@hnu.edu.cn

Abstract

In recent years, autonomous control based on contact inspections in unknown environments is a new hot and difficult point in robotics research. This paper presents a new control law for unmanned aerial manipulator (UAM) to perform contact inspection tasks on vertical surfaces. The selected circular image feature decouples the position and attitude of UAM, so an image-based impedance control is proposed to control the position and track the contact force. The developed controller uses geometric methods to control the attitude. In addition, the designed aerial manipulator decouples the roll and pitch of the UAV from the UAV, which improves the system’s stability. Experiments have been carried out to demonstrate the feasibility of this method.

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Zhang, G., He, Y., Dai, B., Gu, F., Yang, L., Han, J., Liu, G. and Qi, J., “Grasp a Moving Target From the Air: System & Control of an Aerial Manipulator,” In: 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, QLD, Australia, IEEE (2018) pp. 16811687.Google Scholar
Suarez, A., Heredia, G. and Ollero, A., “Design of an anthropomorphic, compliant, and lightweight dual arm for aerial manipulation,” IEEE Access 6, 2917329189 (2018).CrossRefGoogle Scholar
Zhong, H., Miao, Z., Wang, Y., Mao, J., Li, L., Zhang, H., Chen, Y. and Fierro, R., “A practical visual servo control for aerial manipulation using a spherical projection model,” IEEE Trans. Ind. Electron. 67(12), 1056410574 (2020).CrossRefGoogle Scholar
Caballero, A., Suarez, A., Real, F., Vega, V. M., Bejar, M., Rodriguez-Castaño, A. and Ollero, A., “First Experimental Results on Motion Planning for Transportation in Aerial Long-Reach Manipulators with Two Arms,” In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, IEEE (2018) pp. 84718477.Google Scholar
Pereira, P. O. and Dimarogonas, D. V., “Stability of Load Lifting by a Quadrotor Under Attitude Control Delay,” In: 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, IEEE, (2017) pp. 32873292.Google Scholar
Mellinger, D., Shomin, M., Michael, N. and Kumar, V., “Cooperative grasping and transport using multiple quadrotors,” Distributed Auton. Robot. Syst. 83, 545558 (2013).CrossRefGoogle Scholar
Meng, X., He, Y. and Han, J., “Design and Implementation of a Contact Aerial Manipulator System for Glass-Wall Inspection Tasks,” In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, IEEE (2019) pp. 215220.Google Scholar
Tavora, B., Park, H., Romano, M. and Yun, X., “Equilibrium-based force and torque control for an aerial manipulator to interact with a vertical surface,” Robotica 38(4), 582604 (2020).CrossRefGoogle Scholar
Garcia, O., Rojo-Rodriguez, E., Sanchez, A., Saucedo, D. and Munoz-Vazquez, A. J., “Robust geometric navigation of a quadrotor UAV on SE(3),” Robotica 38(6), 10191040 (2020).CrossRefGoogle Scholar
McArthur, D. R., Chowdhury, A. B. and Cappelleri, D. J., “Autonomous Control of the Interacting-Boomcopter UAV for Remote Sensor Mounting,” In: 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, QLD, Australia, IEEE (2018) pp. 52195224.Google Scholar
Trujillo, M. Á., Dios, J. R. M., Martín, C., Viguria, A. and Ollero, A., “Novel aerial manipulator for accurate and robust industrial NDT contact inspection: A new tool for the oil and gas inspection industry,” Sensors 19(6), 1305 (2019).CrossRefGoogle ScholarPubMed
Xie, H., Lynch, A. and Jagersand, M., “Dynamic IBVS of a rotary wing UAV using line features,” Robotica 34(9), 20092026 (2016).CrossRefGoogle Scholar
Stokkeland, M., Klausen, K. and Johansen, T. A., “Autonomous Visual Navigation of Unmanned Aerial Vehicle for Wind Turbine Inspection,” In: 2015 International Conference on Unmanned Aircraft Systems (ICUAS), Denver, CO, USA, IEEE (2015) pp. 9981007.Google Scholar
Lin, J., Wang, Y., Miao, Z., Zhong, H., Nie, J. and Fierro, R., “Robust Image-Based Landing Control of a Quadrotor on an Unknown Moving Platform Using Circle Features,” In: 2021 IEEE International Conference on Real-time Computing and Robotics (RCAR), Xining, China, IEEE (2021) pp. 177182.Google Scholar
Kim, S., Seo, H., Choi, S. and Kim, H. J., “Vision-guided aerial manipulation using a multirotor with a robotic arm,” IEEE/ASME Trans. Mechatron. 21(4), 19121923 (2016).CrossRefGoogle Scholar
Xu, M., Hu, A. and Wang, H., “Image-based visual impedance force control for contact aerial manipulation,” IEEE Trans. Autom. Sci. Eng., 110 (2022). doi: 10.1109/TASE.2022.3162207.CrossRefGoogle Scholar
Mebarki, R. R. and Lippiello, V. V., “Image-based control for aerial manipulation,” Asian J. Control 16(3), 646656 (2014).CrossRefGoogle Scholar
Lin, J., Wang, Y., Miao, Z., Zhong, H. and Fierro, R., “Low-complexity control for vision-based landing of quadrotor UAV on unknown moving platform,” IEEE Trans. Ind. Inform. 18(8), 53485358 (2022).CrossRefGoogle Scholar
Chermprayong, P., Zhang, K., Xiao, F. and Kovac, M., “An integrated delta manipulator for aerial repair: A new aerial robotic system,” IEEE Robot. Autom. Mag. 26(1), 5466 (2019).CrossRefGoogle Scholar
Li, L., Zhang, T., Zhong, H., Li, H., Zhang, H., Fan, S. and Cao, Y., “Autonomous removing foreign objects for power transmission line by using a vision-guided unmanned aerial manipulator,” J. Intell. Robot. Syst. 103(2), 114 (2021).CrossRefGoogle Scholar
Tognon, M., Chávez, H. A. T., Gasparin, E., Sablé, Q., Bicego, D., Mallet, A., Lany, M., Santi, G., Revaz, B., Cortés, J., Franchi, A., “A truly-redundant aerial manipulator system with application to push-and-slide inspection in industrial plants,” IEEE Robot. Autom. Lett. 4(2), 18461851 (2019).CrossRefGoogle Scholar
Lippiello, V., Fontanelli, G. A. and Ruggiero, F., “Image-based visual-impedance control of a dual-arm aerial manipulator,” IEEE Robot. Autom. Lett. 3(3), 18561863 (2018).CrossRefGoogle Scholar
Li, Z., Zhao, K., Zhang, L., Wu, X., Zhang, T., Li, Q., Li, X. and Su, C-Y., “Human-in-the-loop control of a wearable lower limb exoskeleton for stable dynamic walking,” IEEE/ASME Trans. Mechatron. 26(5), 27002711 (2021).CrossRefGoogle Scholar
Li, Z., Xu, C., Wei, Q., Shi, C. and Su, C.-Y., “Human-inspired control of dual-arm exoskeleton robots with force and impedance adaptation,” IEEE Trans. Syst. Man Cybern. Syst. 50(12), 52965305 (2020).CrossRefGoogle Scholar
Su, H., Qi, W., Schmirander, Y., Ovur, S. E., Cai, S. and Xiong, X., “A human activity-aware shared control solution for medical human–robot interaction,” Assembly Autom. 42(3), 388394 (2022).CrossRefGoogle Scholar
Su, H., Hu, Y., Karimi, H. R., Knoll, A., Ferrigno, G. and Momi, E. D., “Improved recurrent neural network-based manipulator control with remote center of motion constraints: Experimental results,” Neural Netw. 131, 291299 (2020).CrossRefGoogle ScholarPubMed
Li, Z., Ren, Z., Zhao, K., Deng, C. and Feng, Y., “Human-cooperative control design of a walking exoskeleton for body weight support,” IEEE Trans. Ind. Inform. 16(5), 29852996 (2020).CrossRefGoogle Scholar
Wu, X. and Li, Z., “Cooperative manipulation of wearable dual-arm exoskeletons using force communication between partners,” IEEE Trans. Ind. Electron. 67(8), 66296638 (2020).CrossRefGoogle Scholar
Zheng, D., Wang, H., Wang, J., Chen, S., Chen, W. and Liang, X., “Image-based visual servoing of a quadrotor using virtual camera approach,” IEEE/ASME Trans. Mechatron. 22(2), 972982 (2017).CrossRefGoogle Scholar