Published online by Cambridge University Press: 09 September 2022
In this paper, an overall structure with the asymmetric constrained controller is constructed for human–robot interaction in uncertain environments. The control structure consists of two decoupling loops. In the outer loop, a discrete output feedback adaptive dynamics programing (OPFB ADP) algorithm is proposed to deal with the problems of unknown environment dynamic and unobservable environment position. Besides, a discount factor is added to the discrete OPFB ADP algorithm to improve the convergence speed. In the inner loop, a constrained controller is developed on the basis of asymmetric barrier Lyapunov function, and a neural network method is applied to approximate the dynamic characteristics of the uncertain system model. By utilizing this controller, the robot can track the prescribed trajectory precisely within a security boundary. Simulation and experimental results demonstrate the effectiveness of the proposed controller.