Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T11:57:35.655Z Has data issue: false hasContentIssue false

Application of a Novel Elimination Algorithm with Developed Continuation Method for Nonlinear Forward Kinematics Solution of Modular Hybrid Manipulators

Published online by Cambridge University Press:  06 December 2019

Arash Rahmani*
Affiliation:
Faculty of Mechanical Engineering, Urmia University of Technology, 5716617165 Urmia, Iran
Shirko Faroughi
Affiliation:
Faculty of Mechanical Engineering, Urmia University of Technology, 5716617165 Urmia, Iran
*
*Corresponding author. E-mails: Arash.rahmani@uut.ac.ir; Arash.Rahmani454@gmail.com

Summary

This paper addresses the application of a novel elimination algorithm with a newly developed homotopy continuation method (HCM) for forward kinematics of a specific hybrid modular manipulator known as n-(6UPS). First, the kinematic model of n-(6UPS) was extracted using a homogenous transformation matrix method. Then, a novel algebraic elimination algorithm was developed to transform the highly nonlinear proposed kinematic model into a system of polynomial equations for each module. Next, the HCM is considered to solve the system of equations. Comparison of the results from the proposed approach with experimental data and other methods demonstrates the efficiency of the proposed contribution.

Type
Articles
Copyright
Copyright © Cambridge University Press 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Herrero, S., Pinto, C., Altuzarra, O. and Diez, M., “Analysis of the 2PRU-1PRS 3DOF parallel manipulator: Kinematics, singularities and dynamics,” Robot. Comp.-Int. Manuf. 51, 6372 (2018).CrossRefGoogle Scholar
Hu, B., Li, B. and Cui, H., “Design and kinematics analysis of a novel serial-parallel kinematic machine,” Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci. 230(18), 33313346 (2016).CrossRefGoogle Scholar
Isaksson, M., Gosselin, C. and Marlow, K., “Singularity analysis of a class of kinematically redundant parallel Schönflies motion generators,” Mech. Mach. Theory. 112, 172191 (2017).CrossRefGoogle Scholar
Lai, Y.-L., Liao, C.-C. and Chao, Z.-G., “Inverse kinematics for a novel hybrid parallel-serial five-axis machine tool,” Robot. Comp.-Int. Manuf. 50, 6379 (2018).CrossRefGoogle Scholar
Li, R., He, S. and Zhao, Y., “Kinematics and Singularity Analysis of a 3-RRR Planar Hybrid Mechanism,” In: Recent Advances in Mechanism Design for Robotics. Proceedings of the 3rd IFToMM Symposium on Mechanism Design for Robotics (Bai, S. and Ceccarelli, M., eds.) (Springer, Netherlands, 2015) pp. 87–97.CrossRefGoogle Scholar
Lu, Y., Dai, Z. and Wang, P., “Full forward kinematics of redundant kinematic hybrid manipulator,” Appl. Math. Model. 62, 134144 (2018).CrossRefGoogle Scholar
Ouyang, P., “A spatial hybrid motion compliant mechanism: Design and optimization,” Mechatronics 21, 479489 (2011).CrossRefGoogle Scholar
Peidro, A., Gil, A., Marin, J. M. and Reinoso, O., “Inverse kinematic analysis of a redundant hybrid climbing robot,” Int. J. Adv. Robot. Syst. 12(11), 163 (2015).CrossRefGoogle Scholar
Peng, Y., Yu, H. and Du, Z., “Design and Kinematic Analysis of a Hybrid Manipulator for Spine Surgery,” IEEE International Conference on Mechatronics and Automation (ICMA), Harbin, China (2016) pp. 884–889.Google Scholar
Pinskier, J., Shirinzadeh, B., Clark, L. and Qin, Y., “Development of a 4-DOF haptic micromanipulator utilizing a hybrid parallel-serial flexure mechanism,” Mechatronics 50, 5568 (2018).CrossRefGoogle Scholar
Qazani, M. R. C., Pedrammehr, S., Rahmani, A., Shahryari, M., Rajab, A. K. S. and Ettefagh, M. M., “An experimental study on motion error of hexarot parallel manipulator,” Int. J. Adv. Manuf. Tech. 72(9–12), 13611376 (2014).CrossRefGoogle Scholar
Rezaei, A. and Akbarzadeh, A., “Position and stiffness analysis of a new asymmetric 2 P RR–PPR parallel CNC machine,” Adv. Robot. 27(2), 133145 (2013).CrossRefGoogle Scholar
Russo, M. and Ceccarelli, M., “Design and Simulation of a Parallel-Serial LARMbot Arm,” In: New Advances in Mechanism and Machine Science. Proceedings of the 12th IFToMM International Symposium on Science of Mechanisms and Machines (Doroftei, I., Oprisan, C., Pisla, D., Lovasz, E. C., eds.) (Springer, Netherlands, 2018) pp. 379–386.CrossRefGoogle Scholar
Schreiber, L.-T. and Gosselin, C., “Kinematically redundant planar parallel mechanisms: Kinematics, workspace and trajectory planning,” Mech. Mach Theory 119, 91105 (2018).CrossRefGoogle Scholar
Woo, S. H., Kim, S. M., Kim, M. G., Yi, B.-J. and Kim, W., “Torque-balancing algorithm for the redundantly actuated parallel mechanism,” Mechatronics 42, 4151 (2017).CrossRefGoogle Scholar
Xu, L., Chen, Q., He, L. and Li, Q., “Kinematic analysis and design of a novel 3T1R 2-(PRR) 2RH hybrid manipulator,” Mech. Mach Theory 112, 105122 (2017).CrossRefGoogle Scholar
Zhou, H., Qin, Y., Chen, H., Ge, S. and Cao, Y., “Structural synthesis of five-degree-of-freedom hybrid kinematics mechanism,” J. Eng. Des. 27(4–6), 390412 (2016).CrossRefGoogle Scholar
Bourges, J.-L., Hubschman, J.-P., Wilson, J., Prince, S., Tsao, T.-C. and Schwartz, S., “Assessment of a hexapod surgical system for robotic micro-macro manipulations in ocular surgery,” Ophthalmic Res. 46(1), 2530 (2011).CrossRefGoogle ScholarPubMed
Gallardo-Alvarado, J., “Mobility analysis and kinematics of the semi-general 2 (3-RPS) series-parallel manipulator,” Robot. Comp.-Int. Manuf. 29, 463472 (2013).CrossRefGoogle Scholar
Li, T., Li, F., Jiang, Y., Zhang, J. and Wang, H., “Kinematic calibration of a 3-P (Pa) S parallel-type spindle head considering the thermal error,” Mechatronics 43, 8698 (2017).CrossRefGoogle Scholar
Mohan, S., “Error analysis and control scheme for the error correction in trajectory-tracking of a planar 2PRP-PPR parallel manipulator,” Mechatronics 46, 7083 (2017).CrossRefGoogle Scholar
Pedrammehr, S., Mahboubkhah, M. and Khani, N., “A study on vibration of Stewart platform-based machine tool table,” Int. J. Adv. Manuf. Tech. 65(5–8), 9911007 (2013).CrossRefGoogle Scholar
Ruiz, A., Campa, F., Roldán-Paraponiaris, C., Altuzarra, O. and Pinto, C., “Experimental validation of the kinematic design of 3-PRS compliant parallel mechanisms,” Mechatronics 39, 7788 (2016).CrossRefGoogle Scholar
Qazani, M. R. C., Pedrammehr, S., Rahmani, A., Danaei, B., Ettefagh, M. M., Rajab, A. K. S. and Abdi, H., “Kinematic analysis and workspace determination of hexarot—a novel 6-DOF parallel manipulator with a rotation-symmetric arm system,” Robotica 33(8), 16861703 (2015).CrossRefGoogle Scholar
Duelen, G., Kirchhoff, U. and Held, J., “Methods of identification of geometrical data in robot kinematics,” Robot. Comp.-Int. Manuf. 4(1–2), 181185 (1988).CrossRefGoogle Scholar
Pierrot, F., Reynaud, C. and Fournier, A., “DELTA: A simple and efficient parallel robot,” Robotica 8(2), 105109 (1990).CrossRefGoogle Scholar
Li, Y. and Xu, Q., “Kinematic analysis of a 3-PRS parallel manipulator,” Robot. Comp.-Int. Manuf. 23(4), 395408 (2007).CrossRefGoogle Scholar
Gallardo-Alvarado, J., García-Murillo, M. A., Islam, M. N. and Abedinnasab, M. H., “Kinematics of the 4-RUU parallel manipulator generator of the Schönflies motion by means of screw theory,” J. Mech. Sci. Technol. 31(10), 49254932 (2017).CrossRefGoogle Scholar
Wang, L. C. T. and Oen, K. T., “Numerical direct kinematic analysis of fully parallel linearly actuated platform type manipulators,” J. Robot. Syst. 19(8), 391400 (2002).CrossRefGoogle Scholar
Rahmani, A., Ghanbari, A. and Mahboubkhah, M., “Kinematics analysis and numerical simulation of hybrid serial-parallel manipulator based on neural network,” Neural. Netw. World 25(4), 427442 (2015).CrossRefGoogle Scholar
He, J.-H., “Variational iteration method–A kind of non-linear analytical technique: Some examples,” Int. J. Non.-lin. Mech. 34(4), 699708 (1999).CrossRefGoogle Scholar
Wu, T.-M., “A study of convergence on the Newton-homotopy continuation method,” Appl. Math. Comput. 168(2), 11691174 (2005).Google Scholar
Morgan, A., Solving Polynomial Systems Using Continuation for Engineering and Scientific Problems (Society for Industrial Applied Mathematics (SIAM), Philadelphia, PA, USA, 2009).CrossRefGoogle Scholar
Jalali, F., Seader, J. and Khaleghi, S., “Global solution approaches in equilibrium and stability analysis using homotopy continuation in the complex domain,” Comp. Chem. Eng. 32(10), 23332345 (2008).CrossRefGoogle Scholar
Jimeìnez-Islas, H., Martínez-Gonzaìlez, G. M., Navarrete-Bolaños, J. L., Botello-Aìlvarez, J. E. and Oliveros-Munoz, J. M., “Nonlinear homotopic continuation methods: A chemical engineering perspective review,” Ind. Eng. Chem. Res. 52(42), 1472914742 (2013).CrossRefGoogle Scholar
Oliveros-Muñoz, J. M. and Jiménez-Islas, H., “Hyperspherical path tracking methodology as correction step in homotopic continuation methods,” Chem. Eng. Sci. 97, 413429 (2013).CrossRefGoogle Scholar
Wu, T.-M., “Solving the nonlinear equations by the Newton-homotopy continuation method with adjustable auxiliary homotopy function,” Appl. Math. Computation 173(1), 383388 (2006).CrossRefGoogle Scholar
Chen, W.-S., Chen, H. and Liu, J.-K., “Extreme configuration bifurcation analysis and link safety length of Stewart platform,” Mech. Mach Theory 43(5), 617626 (2008).CrossRefGoogle Scholar
Gao, L. and Wu, W., “Forward kinematics modeling of spatial parallel linkage mechanisms based on constraint equations and the numerical solving method,” Robotica 35(2), 293309 (2017).CrossRefGoogle Scholar
Nikoobin, A. and Moradi, M., “Indirect solution of optimal control problems with state variable inequality constraints: Finite difference approximation,” Robotica 35(1), 5072 (2017).CrossRefGoogle Scholar
Varedi, S., Daniali, H. and Ganji, D., “Kinematics of an offset 3-UPU translational parallel manipulator by the homotopy continuation method,” Nonlinear Anal. Real World Appl. 10(3), 17671774 (2009).CrossRefGoogle Scholar
LiangZhi, F., Elatta, A. and XiaoPing, L., “Kinematic calibration for a hybrid 5DOF manipulator based on 3-RPS in-actuated parallel manipulator,” Int. J. Adv. Manuf. Technol. 25(7–8), 730734 (2005).CrossRefGoogle Scholar
Campos, A., Budde, C. and Hesselbach, J., “A type synthesis method for hybrid robot structures,” Mech. Mach. Theory 43(8), 984995 (2008).CrossRefGoogle Scholar
Gallardo-Alvarado, J., Aguilar-Nájera, C., Casique-Rosas, L., Pérez-González, L. and Rico-Martínez, J., “Solving the kinematics and dynamics of a modular spatial hyper-redundant manipulator by means of screw theory,” Multibody Syst. Dyn. 20(4), 307325 (2008).CrossRefGoogle Scholar
Gallardo-Alvarado, J., Aguilar-Nájera, C. R., Casique-Rosas, L., Rico-Martínez, J. M. and Islam, M. N., “Kinematics and dynamics of 2 (3-RPS) manipulators by means of screw theory and the principle of virtual work,” Mech. Mach Theory 43(10), 12811294 (2008).CrossRefGoogle Scholar
Yang, C., Han, J., Zheng, S. and Peter, O. O., “Dynamic modeling and computational efficiency analysis for a spatial 6-DOF parallel motion system,” Nonlinear Dyn. 67(2), 10071022 (2012).CrossRefGoogle Scholar
Hu, B., Yu, J., Lu, Y., Sui, C. and Han, J., “Statics and stiffness model of serial-parallel manipulator formed by k parallel manipulators connected in series,” J Mech. Robotics 4(2), 021012–8 (2012).CrossRefGoogle Scholar
Petko, M., Gac, K., Góra, G., Karpiel, G., Ochoñski, J. and Kobus, K., “CNC system of the 5-axis hybrid robot for milling,” Mechatronics 37, 8999 (2016).CrossRefGoogle Scholar
Hu, B., “Formulation of unified Jacobian for serial-parallel manipulators,” Robot. Comp.-Int. Manuf. 30(5), 460467 (2014).CrossRefGoogle Scholar
Huang, G., Guo, S., Zhang, D., Qu, H. and Tang, H., “Kinematic analysis and multi-objective optimization of a new reconfigurable parallel mechanism with high stiffness,” Robotica 36(2), 187203 (2018).CrossRefGoogle Scholar
Ghanbari, A. and Rahmani, A., “Neural network solutions for forward kinematics problem of hybrid serial-parallel manipulator,” World Sci. J. 1(1), 148158, (2013).Google Scholar
Rahmani, A., Ghanbari, A. and Pedrammehr, S., “Kinematic analysis for hybrid 2-(6-UPU) manipulator by wavelet neural network,” Adv. Mater. Res. 1016, 726730 (2014).CrossRefGoogle Scholar
Palancz, B., Awange, J. L., Zaletnyik, P. and Lewis, R. H., “Linear homotopy solution of nonlinear systems of equations in geodesy,” J. Geodesy. 84(1), 7995 (2010).CrossRefGoogle Scholar
Nor, H. M., Md Ismail, A. I., Majid, A. A., Eshkuvatov, Z. K., Kilicman, A. and June, L. W., “A New Homotopy Function for Solving Nonlinear Equations,” AIP Conference Proceedings, (2013) pp. 21–25.Google Scholar
Kuznetsov, Y. A. and Levitin, V., “CONTENT: A multiplatform environment for analyzing dynamical systems,” Centrum voor Wiskunde en Informatica (CWI), Kruislaan, 413(1098), (1997).Google Scholar
Rheinboldt, W. C. and Burkardt, J. V., “Algorithm 596: A program for a locally parameterized continuation processACM Trans. Math. Software. 9(2), 236241 (1983).CrossRefGoogle Scholar
Watson, L. T., Sosonkina, M., Melville, R. C., Morgan, A. P. and Walker, H. F., “Algorithm 777: HOMPACK90: A suite of Fortran 90 codes for globally convergent homotopy algorithms,” ACM Trans. Math. Software (TOMS) 23(4), 514549 (1997).CrossRefGoogle Scholar
Dhooge, A., Govaerts, W. and Kuznetsov, Y. A., “MATCONT: A MATLAB package for numerical bifurcation analysis of ODEs,” ACM Trans. Math. Software (TOMS) 29(2), 141164, (2003).CrossRefGoogle Scholar