Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T12:59:52.808Z Has data issue: false hasContentIssue false

SUAS: A Novel Soft Underwater Artificial Skin with Capacitive Transducers and Hyperelastic Membrane

Published online by Cambridge University Press:  20 December 2018

Giovanni Gerardo Muscolo*
Affiliation:
DIMEAS, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy
Giacomo Moretti
Affiliation:
TeCIP Institute, Scuola Superiore Sant’Anna, Via Moruzzi 1, 56127 Pisa, Italy E-mail: g.moretti@santannapisa.it
Giorgio Cannata
Affiliation:
DIBRIS, Università degli Studi di Genova, Via All’Opera Pia 13A, 16145 Genova, Italy E-mail: giorgio.cannata@unige.it
*
*Corresponding author. E-mail: giovanni.muscolo@polito.it

Summary

The paper presents physical modeling, design, simulations, and experimentation on a novel Soft Underwater Artificial Skin (SUAS) used as tactile sensor. The SUAS functions as an electrostatic capacitive sensor, and it is composed of a hyperelastic membrane used as external cover and oil inside it used to compensate the marine pressure. Simulation has been performed studying and modeling the behavior of the external interface of the SUAS in contact with external concentrated loads in marine environment. Experiments on the external and internal components of the SUAS have been done using two different conductive layers in oil. A first prototype has been realized using a 3D printer. The results of the paper underline how the soft materials permit better adhesion of the conductive layer to the transducers of the SUAS obtaining higher capacitance. The results here presented confirmed the first hypotheses presented in a last work and opened new ways in the large-scale underwater tactile sensor design and development. The investigations are performed in collaboration with a national Italian project named MARIS, regarding the possible extension to the underwater field of the technologies developed within the European project ROBOSKIN.

Type
Articles
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bogue, R., “Underwater robots: A review of technologies and applications,” Ind. Rob. Int. J. 42(3), 186191 (2015).10.1108/IR-01-2015-0010CrossRefGoogle Scholar
Bemfica, J. R., Melchiorri, C., Moriello, L., Palli, G. and Scarcia, U., “A Three-Fingered Cable-Driven Gripper for Underwater Applications,” 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong (2014) pp. 24692474.10.1109/ICRA.2014.6907203CrossRefGoogle Scholar
Ding-Zhong, T., Qi-Ming, W., Rui-Han, S., Xin, Y. and Yi-Hua, G., “Optical fiber based tactile sensor for underwater robots,” J. Marine Sci. Appl. 7, 122126 (2008). doi: 10.1007/s11804-008-7055-3.Google Scholar
Lane, D. M., Davies, J. B. C., Robinson, G., O’Brien, D. J., Sneddon, J., Seaton, E. and Elfstrom, A., “The AMADEUS dextrous subsea hand: Design, modeling, and sensor processing,” IEEE J. Oceanic Eng. 24(1), 96111 (1999).10.1109/48.740158CrossRefGoogle Scholar
Liljebäck, P., Stavdahl, Ø., Pettersen, K. Y. and Gravdahl, J. T., “Mamba-A waterproof snake robot with tactile sensing,” 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2014), Chicago (IEEE, September 14–18, 2014) pp. 294301.10.1109/IROS.2014.6942575CrossRefGoogle Scholar
DeZhang, X., Ge, Y. J., Fei, S., Cheng, W. Z., Fu, G. L. and Yuman, N., “Tactile Sensing for Underwater Operation System Based on Multi Finger Sensors Information Fusion,” 2005 IEEE International Conference on Information Acquisition, Hong Kong and Macau (IEEE, 2005) p. 6.Google Scholar
Lemburg, J., Kampmann, P. and Kirchner, F., “A Small-Scale Actuator with Passive-Compliance for a Fine-Manipulation Deep-Sea Manipulator,” OCEANS 2011, Kona, Hawaii (IEEE, 2011) pp. 14.Google Scholar
Palli, G., Moriello, L. and Melchiorri, C., “Performance and sealing material evaluation in 6-axis force-torque sensors for underwater robotics,” IFAC-PapersOnLine 48(2), 177182 (2015).10.1016/j.ifacol.2015.06.029CrossRefGoogle Scholar
Stuart, H. S., Bagheri, M., Wang, S., Barnard, H., Sheng, A. L., Jenkins, M. and Cutkosky, M. R., “Suction Helps in a Pinch: Improving Underwater Manipulation with Gentle Suction Flow,” 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany (IEEE, 2015) pp. 22792284.10.1109/IROS.2015.7353683CrossRefGoogle Scholar
Stuart, H. S., Wang, S., Khatib, O. and Cutkosky, M. R., “The ocean one hands: An adaptive design for robust marine manipulation,” Int. J. Rob. Res. 36(2), 150166 (2017). doi: 10.1177/0278364917694723.CrossRefGoogle Scholar
Aggarwal, A., Kampmann, P., Lemburg, J. and Kirchner, F., “Haptic object recognition in underwater and deep-sea environments,” J. Field Rob. 32, 119 (2014). doi: 10.1002/rob.21538.Google Scholar
Oddo, C. M., Beccai, L., Muscolo, G. G. and Carrozza, M. C., “A Biomimetic MEMS-Based Tactile Sensor Array with Fingerprints Integrated in a Robotic Fingertip for Artificial Roughness Encoding,” Proceedings IEEE 2009 International Conference on Robotics and Biomimetics (ROBIO 2009), Guilin, Guangxi, China (2009).Google Scholar
Silvera-Tawil, D., Rye, D. and Velonaki, M., “Artificial skin and tactile sensing for socially interactive robots: A review,” Rob. Auton. Syst. 63, 230243 (2015).10.1016/j.robot.2014.09.008CrossRefGoogle Scholar
Bruno, A. and Cannata, G., “A New Tactile Sensor for Robotic Underwater Applications,” IIA/SOCO, Genova, Italy (1999).Google Scholar
Asadnia, M., Kottapalli, A. G. P., Miao, J., Warkiani, M. E. and Triantafyllou, M. S., “Artificial fish skin of self-powered micro-electromechanical systems hair cells for sensing hydrodynamic flow phenomena,” J. R. Soc. Interface 12(111), 20150322 (2015).10.1098/rsif.2015.0322CrossRefGoogle ScholarPubMed
Bandyopadhyay, P. R. and Hellum, A. M., “Modeling how shark and dolphin skin patterns control transitional wall-turbulence vorticity patterns using spatiotemporal phase reset mechanisms,” Sci. Rep. 4, 6650 (2014).10.1038/srep06650CrossRefGoogle ScholarPubMed
Wen, L., Weaver, J. C. and Lauder, G. V., “Biomimetic shark skin: Design, fabrication and Hydrodynamic function,” J. Exp. Biol. 217, 16561666 (2014). doi: 10.1242/jeb.097097.CrossRefGoogle ScholarPubMed
Walker, C. and Anderson, I., “From Land to Water: Bringing Dielectric Elastomer Sensing to the Underwater Realm,” In: Electroactive Polymer Actuators and Devices (EAPAD) 2016, vol. 9798, Las Vegas, NV (International Society for Optics and Photonics, 2016) p. 97982B.Google Scholar
Kahn, J. C. and Tangorra, J. L., “The effects of fluidic loading on underwater contact sensing with robotic fins and beams,” IEEE Trans. Haptic 9(2), 184195 (2016).10.1109/TOH.2015.2485200CrossRefGoogle ScholarPubMed
Muscolo, G. G. and Cannata, G., “A Novel Tactile Sensor for Underwater Applications: Limits and Perspectives,” OCEANS 2015, Genova (IEEE, 2015) pp. 17.Google Scholar
Antonelli, G., Underwater Robots. Motion and Force Control of Vehicle-Manipulator Systems. Springer Tracts in Advanced Robotics (Springer-Verlag, Heidelberg, Germany, 2003).10.1115/1.1623755CrossRefGoogle Scholar
Rajruangrabin, J. and Popa, D. O., “Enhancement of Manipulator Interactivity Through Compliant Skin and Extended Kalman Filtering,” IEEE International Conference on Automation Science and Engineering, 2007, CASE 2007 (IEEE, 2007) pp. 11111116.Google Scholar
Cirillo, A., Cirillo, P., De Maria, G., Natale, C. and Pirozzi, S., “An artificial skin based on optoelectronic technology,” Sens. Actuators, A 212, 110122 (2014).10.1016/j.sna.2014.03.030CrossRefGoogle Scholar
Mittendorfer, P., Dean, E. and Cheng, G., “Automatic Robot Kinematic Modeling with a Modular Artificial Skin,” 2014 14th IEEE-RAS International Conference on Humanoid Robots (Humanoids) (IEEE, 2014) pp. 749754.10.1109/HUMANOIDS.2014.7041447CrossRefGoogle Scholar
Schmitz, A., Maiolino, P., Maggiali, M., Natale, L., Cannata, G. and Metta, G., “Methods and technologies for the implementation of large-scale robot tactile sensors,” IEEE Trans. Rob. 27(3), 389400 (2011).10.1109/TRO.2011.2132930CrossRefGoogle Scholar
Roy, D., Wettels, N. and Loeb, G. E., “Elastomeric skin selection for a fluid-filled artificial fingertip,” J. Appl. Polym. Sci. 127(6), 46244633 (2013).10.1002/app.38030CrossRefGoogle Scholar
Kampmann, P., Lemburg, J., Hanff, H. and Kirchner, F., “Hybrid Pressure-Tolerant Electronics,” IEEE OCEANS (2012).Google Scholar
Thiede, C., Buscher, M., Lück, M., Lehr, H., Körner, G., Martin, J., Schlichting, M., Krüger, S. and Huth, H., “An Overall Pressure Tolerant Underwater Vehicle: DNS Pegel,” OCEANS 2009–EUROPE, Bremen, Germany (2009) pp. 16.Google Scholar
Li, R., Anvar, A. P., Anvar, A. M. and Lu, T.-F., “Dynamic modeling of underwater manipulator and its simulation,” World Acad. Sci. Eng. Tehnol. 6, 26112620 (2012).Google Scholar
Casalino, G., Casalino, G., Caccia, M., Caselli, S., Melchiorri, C., Antonelli, G., Caiti, A., Indiveri, G., Cannata, G., Simetti, E., Torelli, S. and Sperindè, A., “Underwater intervention robotics: An outline of the Italian national project Maris,” Mar. Technol. Soc. J. 50(4), 98107 (2016).10.4031/MTSJ.50.4.7CrossRefGoogle Scholar
Cannata, G. and Maggiali, M., “An Embedded Tactile and Force Sensor for Robotic Manipulation and Grasping,” Proceedings of 2005 IEEE-RAS International Conference on Humanoid Robots, Tsukuba, Japan (2005).Google Scholar
Maiolino, P., Maggiali, M., Cannata, G., Metta, G. and Natale, L., “A flexible and robust large scale capacitive tactile system for robots,” IEEE Sens. J. 13(10), 39103917 (2013). doi: 10.1109/JSEN.2013.2258149.CrossRefGoogle Scholar
Simetti, E., Casalino, G., Torelli, S., Sperindè, A. and Turetta, A., “Floating underwater manipulation: Developed control methodology and experimental validation within the TRIDENT project,” J. Field Rob. 31(3), 364385 (2014).10.1002/rob.21497CrossRefGoogle Scholar
Holzapfel, G. A., Nonlinear Solid Mechanics. A Continuum Approach for Engineering (John Wiley & Sons, Ltd., West Sussex, England, 2000).Google Scholar
Ogden, R. W., “Elastic Deformations of Rubberlike Solids,” In: Mechanics of Solids, the Rodney Hill 60th Anniversary Volume (Hopkins, H. G., and Sewell, M. J., eds.), (Pergamon Press, Oxford, 1982) pp. 499537.Google Scholar
Dorfmann, L. and Ogden, R. W., “Nonlinear theory of electrostatic and magnetoelastic interactions,” In: Nonlinear Elasticity Background, Chapter 3 (Springer, 2014) pp. 8386. doi: 10.1007/978-1-4614-9596-3_3.Google Scholar
Abeyaratne, R., Lecture Notes on the Mechanics of Elastic Solids. Volume II: Continuum Mechanics, 1st edn (Cambridge, MA and Singapore, 1952).Google Scholar
Felhos, D., Xu, D., Schlarb, A. K., Váradi, K. and Goda, T., “Viscoelastic characterization of an EPDM rubber and finite element simulation of its dry rolling friction,” Express Polym. Lett. 2(3), 157164 (2008).10.3144/expresspolymlett.2008.21CrossRefGoogle Scholar
Song, B. and Chen, W., “One-dimensional dynamic compressive behavior of EPDM rubber,” J. Eng. Mater. Technol. 125(3), 294301 (2003).10.1115/1.1584492CrossRefGoogle Scholar
Vertechy, R., Rosati, G. P. P. and Fontana, M., “Reduced model and application of inflating circular diaphragm dielectric elastomer generators for wave energy harvesting,” J. Vib. Acoust. 137(1), 011004 (2015).10.1115/1.4028508CrossRefGoogle Scholar
Marchese, A. D., Katzschmann, R. K. and Rus, D., “A recipe for soft fluidic elastomer robots,” Soft Rob. 2(1), 725 (2015).10.1089/soro.2014.0022CrossRefGoogle ScholarPubMed
Muraoka, J. S., Deep-Ocean Biodeterioration of Materials - Part III. Three Years at 5300 Feet NCEL TR-428 (U.S. Naval Civil Engineering Laboratory, 1966).Google Scholar