Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-27T15:08:52.621Z Has data issue: false hasContentIssue false

Simultaneous velocity, impact and force control

Published online by Cambridge University Press:  10 March 2009

Ranko Zotovic Stanisic*
Affiliation:
Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain
Ángel Valera Fernández
Affiliation:
Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain
*
*Corresponding author. E-mail: rzotovic@isa.upv.es

Summary

In this paper, we propose a control method to achieve three objectives simultaneously: velocity regulation during free motion, impact damping and finally force reference tracking. During impact, the parameters are switched in order to dissipate the energy of the system as fast as possible and the optimal switching criteria are deduced. The possibility of sliding regimes is analysed and the theoretical results are verified in simulations.

Type
Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Brogliato, B., Nonsmooth Mechanics (Springer Verlag, London, 1999).CrossRefGoogle Scholar
2.Brach, R., Mechanical Impact Dynamics–Rigid Body Collisions (John Wiley & Sons Publishers, New York, 1991).CrossRefGoogle Scholar
3.Brogliato, B., Nicolescu, S. I. and Orhant, P., “On the control of finite dimensional mechanical systems with unilateral constraints,” IEEE Trans. Automat. Control 42 (2), 200215 (1997).CrossRefGoogle Scholar
4.Volpe, R. and Khosla, P., “A theoretical and experimental investigation of impact control for manipulators,” Int. J. Rob. Res. 12 (4), 351365 (1993).CrossRefGoogle Scholar
5.Hyde, J. and Cutkosky, M., “Controlling contact transitions,” IEEE Control Syst. Mag. 14 (1), 2530 (1994).Google Scholar
6.Ferretti, G., Magnani, G. and Río, A. Zavala, “Impact modelling and control for industrial manipulators,” IEEE Control Syst. Mag. 18 (4), 6571 (1998).Google Scholar
7.Zotovic Stanisic, R. and Valera Fernández, A., “Robot Force and Impact Control with Feedforward Switching,” Proceedings of the 17th IFAC world Congress, Seoul, Korea (2008).Google Scholar
8.Armstrong, B., Gutierrez, J., Wade, B. and Joseph, R., “Stability of phase-based gain modulation with designer-chosen switch functions,” Int. J. Rob. Res. 25 (8), 781796 (2006).Google Scholar
9.Franke, D., “Entwurf robuster Regelungssysteme mittels zustandsabhängiger Strukturännderung,” Regelungstechnik 29 (1), 263268 (1981).Google Scholar
10.Xu, Y., Hollerbach, J. M. and Ma, D., “Force and Contact Transient Control Using Nonlinear PD Control,” Proceedings of the 1994 International Conference on Robotics and Automation (1994) pp. 924–930.Google Scholar
11.Xu, Y., Hollerbach, J. M. and Ma, D., “A nonlinear PD controller for force and contact transient control,” IEEE Control Syst. Mag. 15 (1), 1521 (1995).Google Scholar
12.Seraji, H. and Colbaugh, R., “Force tracking in impedance Control,” Int. J. Rob. Res. 16 (1), 97117 (1997).CrossRefGoogle Scholar
13.Seraji, H., “Nonlinear and adaptive control of force and compliance in manipulators,” Int. J. Rob. Res. 17 (5), 467484 (1998).CrossRefGoogle Scholar
14.Armstrong, B., McPherson, J. and Li, Y., “Stability of nonlinear PD control,” Appl. Math. Comp. Sci. 7 (2), 101120 (1997).Google Scholar
15.Armstrong, B. and Wade, B., “Nonlinear PID control with partial state knowledge: Damping without derivatives,” Int. J. Rob. Res. 19 (8), 715731 (2000).CrossRefGoogle Scholar
16.Armstrong, B., Neevel, D. and Kusik, T., “New results in NPID control: tracking, integral control, friction compensation and experimental results,” IEEE Trans. Control Syst. Technol. 9 (2), 399406 (2001).Google Scholar
17.Volpe, R. and Khosla, P., “A theoretical and experimental investigation of explicit force control strategies for robot manipulators,” IEEE Trans. Automat. Control 38 (11), 16341650 (1993).CrossRefGoogle Scholar
18.Chiaverini, S., Siciliano, B. and Villani, L., “The parallel approach to force/ position control of robotic manipulators,” IEEE Trans. Rob. Automat. 9 (4), 361373 (1993).Google Scholar
19.Sciavicco, L. and Siciliano, B., Modeling and Control of Robot Manipulators (McGraw-Hill Company Inc., New York, 1996).Google Scholar