Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-11T03:00:56.296Z Has data issue: false hasContentIssue false

A nonlinear trajectory tracking controller for mobile robots with velocity limitation via parameters regulation

Published online by Cambridge University Press:  16 April 2015

Mario E. Serrano*
Affiliation:
Instituto de Ingeniería Química, Universidad Nacional de San Juan, Av. Libertador San Martín Oeste 1109, San Juan J5400ARL, Argentina
Sebastián A. Godoy*
Affiliation:
Instituto de Ingeniería Química, Universidad Nacional de San Juan, Av. Libertador San Martín Oeste 1109, San Juan J5400ARL, Argentina
Vicente A. Mut*
Affiliation:
Instituto de Automática, Universidad Nacional de San Juan, Av. Libertador San Martín Oeste 1109, San Juan J5400ARL, Argentina
Oscar A. Ortiz*
Affiliation:
Instituto de Ingeniería Química, Universidad Nacional de San Juan, Av. Libertador San Martín Oeste 1109, San Juan J5400ARL, Argentina
Gustavo J. E. Scaglia*
Affiliation:
Instituto de Ingeniería Química, Universidad Nacional de San Juan, Av. Libertador San Martín Oeste 1109, San Juan J5400ARL, Argentina Departamento de Automatización y Control Industrial, Facultad de Ingeniería Eléctrica y Electrónica, Escuela Politécnica Nacional, Quito, Ecuador
*
Corresponding authors. E-mails: eserrano@fi.unsj.edu.ar

Summary

This paper addresses the problem of trajectory tracking control in mobile robots under velocity limitations. Following the results reported in ref. [1], the problem of trajectory tracking considering control actions constraint is focused and the zero convergence of the tracking errors is demonstrated. In this work, the original methodology is expanded considering a controller that depends not only on the position but also on the velocity. A simple scheme is obtained, which can be easily implemented in others controllers of the literature. Experimental results are presented and discussed, demonstrating the good performance of the controller.

Type
Articles
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Scaglia, G., Montoya, L. Q., Mut, V. and di Sciascio, F., “Numerical methods based controller design for mobile robots,” Robotica 27 (2), 269279 (2009).Google Scholar
2. Andaluz, V., Roberti, F., Toibero, J. M. and Carelli, R., “Adaptive unified motion control of mobile manipulators,” Control Eng. Pract. 20 (12), 13371352 (2012).Google Scholar
3. Martins, F. N., Celeste, W. C., Carelli, R., Sarcinelli-Filho, M. and Bastos-Filho, T. F., “An adaptive dynamic controller for autonomous mobile robot trajectory tracking,” Control Eng. Pract. 16 (11), 13541363 (2008).Google Scholar
4. Rosales, A., Scaglia, G., Mut, V. and Di Sciascio, F., “Trajectory tracking of mobile robots in dynamic environments-a linear algebra approach,” Robotica 27 (7), 981997 (2009).CrossRefGoogle Scholar
5. Rosales, A., Scaglia, G., Mut, V. and Di Sciascio, F., “Formation control and trajectory tracking of mobile robotic systems - A Linear Algebra approach,” Robotica 29 (3), 335349 (2011).CrossRefGoogle Scholar
6. Serrano, M. E., Scaglia, G. J. E., Godoy, S. A., Mut, V. and Ortiz, O. A., “Trajectory Tracking of Underactuated Surface Vessels: A Linear Algebra Approach,” IEEE Trans. on Control Syst. Technol. 20 (3), 11031111 (2013).Google Scholar
7. Lee, T.-C., Song, K.-T., Lee, C.-H. and Teng, C.-C., “Tracking control of unicycle-modeled mobile robots using a saturation feedback controller,” IEEE Trans. Control Syst. Technol. 9 (2), 305318 (2001).Google Scholar
8. Klančar, G. and Škrjanc, I., “Tracking-error model-based predictive control for mobile robots in real time,” Robot. Auton. Syst. 55 (6), 460469 (2007).Google Scholar
9. Resende, C. Z., Carelli, R. and Sarcinelli-Filho, M., “A nonlinear trajectory tracking controller for mobile robots with velocity limitation via fuzzy gains,” Control Eng. Pract. 21 (10), 13021309 (2013).Google Scholar
10. Serrano, M. E., Scaglia, G. J. E., Cheein, F. A., Mut, V. and Ortiz, O. A., “Trajectory-tracking controller design with constraints in the control signals: A case study in mobile robots,” Robotica (2014). doi:10.1017/S0263574714001325.Google Scholar
11. Scaglia, G., Rosales, A., Quintero, L., Mut, V. and Agarwal, R., “A linear-interpolation-based controller design for trajectory tracking of mobile robots,” Control Eng. Pract. 18 (3), 318329 (2010).Google Scholar
12. Toibero, J. M., Roberti, F. and Carelli, R., “Stable contour-following control of wheeled mobile robots,” Robotica 27 (1), 112 (2009).Google Scholar
13. Strang, L. A. and Aleebra, L., Its Applications (Academic Press, New York, 1980).Google Scholar
14. Brockett, R. W., “Asymptotic Stability and Feedback Stabilization,” Proceedings of the Conference Held at Michigan Technological University (1983) vol. 27, pp. 181–208.Google Scholar
15. Normey-Rico, J. E., Alcalá, I., Gómez-Ortega, J. and Camacho, E. F., “Mobile robot path tracking using a robust PID controller,” Control Eng. Pract. 9 (11), 12091214 (2001).Google Scholar
16. Normey-Rico, J. E., Gómez-Ortega, J. and Camacho, E. F., “A Smith-predictor-based generalised predictive controller for mobile robot path-tracking,” Control Eng. Pract. 7 (6), 729740 (1999).Google Scholar
17. Cha, P. D. and Molinder, J. I., Fundamentals of Signals and Systems with CD-ROM: A Building Block Approach (Cambridge University Press, 2006).Google Scholar
18. Marti, K., Stochastic Optimization Methods (Springer, 2008).Google Scholar
19. Roth, S. A. and Batavia, P., “Evaluating Path Tracker Performance for Outdoor Mobile Robots,” Automation Technology for Off-Road Equipment (2002).Google Scholar