Hostname: page-component-cb9f654ff-mnl9s Total loading time: 0 Render date: 2025-08-22T05:15:47.689Z Has data issue: false hasContentIssue false

Human–robot task distribution metrics in car battery recycling: a case study on screw removal

Published online by Cambridge University Press:  01 August 2025

Luca Quattrucci
Affiliation:
University of Rome Tor Vergata, Rome, Italy ENEA Casaccia Research Centre, Rome, Italy
Matteo Russo*
Affiliation:
University of Rome Tor Vergata, Rome, Italy
Reza Radpour
Affiliation:
University of Rome Tor Vergata, Rome, Italy
Marco Ceccarelli
Affiliation:
University of Rome Tor Vergata, Rome, Italy
*
Corresponding author: Matteo Russo; Email: matteo.russo@uniroma2.eu

Abstract

With the increasing manufacturing of electric vehicles, car battery recycling is crucial for environmental sustainability. The disassembly of car batteries includes critical health hazards for the operator, due to potential chemical reactions or physical injuries. These reasons make robots particularly interesting for automatic disassembly. This paper proposes a systematic approach to automation and human–robot cooperation in car battery disassembly tasks with a case study on screw removal. A novel parameter is proposed to evaluate whether a human operator or a robot is more appropriate for each specific task, considering both performance and associated risks. The proposed metrics are validated with an experimental example, in which the performance of a robot and a human on a screw-removal task is compared numerically using statistical methods. The advantages and disadvantages of both options are examined through the application and show how the new performance criterion effectively provides insights into the distribution of tasks between humans and robots.

Information

Type
Research Article
Copyright
© The Author(s) 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

United Nation General Assembly, Transforming our world: The 2030 Agenda for sustainable development,” A/RES/70/1 (2015). https://sdgs.un.org/2030agenda (accessed on 22th July 2025).Google Scholar
European Environment Agency, Transport and Environment Report 2021: Decarbonising Road Transport – the Role of Vehicles, Fuels and Transport Demand (Publications Office of the European Union, Luxembourg, 2022). doi: 10.2800/68902.Google Scholar
Wu, S., Kaden, N. and Dröder, K., “A systematic review on lithium-ion battery disassembly processes for efficient recycling,” Batteries 9(6), 297 (2023). doi: 10.3390/batteries9060297.CrossRefGoogle Scholar
BloombergNEF, Electric vehicle outlook 2023 (2023). https://about.bnef.com/electric-vehicle-outlook/ (accessed on 22th August 2024).Google Scholar
Gaines, L. L. and Dunn, J. B., “Lithium–Ion Battery Environmental Impacts,” In: Lithium–Ion Batteries: Advances and Applications (Elsevier B.V., 2014) pp. 483508. doi: 10.1016/B978-0-444-59513-3.00021-2.CrossRefGoogle Scholar
IEA, Global EV Outlook 2024 (IEA, Paris, 2024). https://www.iea.org/reports/global-ev-outlook-2024 (accessed on 22th August 2024).Google Scholar
U.S. Geological Survey, Mineral Commodity Summaries 2023 (USGS Numbered Series No. 2023) (National Minerals Information Center, 2023). doi: 10.3133/mcs2023.Google Scholar
Greenpeace, Greenpeace report troubleshoots China’s electric vehicles boom, highlights critical supply risks for lithium-ion batteries (2023). https://www.greenpeace.org/eastasia/press/6175/greenpeace-report-troubleshoots-chinas-electric-vehicles-boom-highlights-critical-supply-risks-for-lithium-ion-batteries/ (accessed on 22th August 2024).Google Scholar
Zhao, Y., Ruether, T., Bhatt, A. and Staines, J., “Australian Landscape for Lithium Ion Battery Recycling and Reuse in 2020 - Current Status, Gap Analysis and Industry Perspectives (CSIRO and FBI CRC: CSIRO and FBI CRC, 2021) csiro:EP208519. doi: 10.25919/91ap-m622.Google Scholar
Sambamurthy, S., Raghuvanshi, S. and Sangwan, K. S., “Environmental impact of recycling spent lithium-ion batteries,” Proc. CIRP 98, 631636 (2021). doi: 10.1016/j.procir.2021.01.166.CrossRefGoogle Scholar
Official Journal of the European Union, Directive 2006/66/EC of the European Parliament and of the Council of 6 September 2006 on batteries and accumulators and waste batteries and accumulators and repealing Directive 91/157/EEC. Official Journal of the European Union, L 266, 26 September 2006, pp. 114. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32006L0066.Google Scholar
Hill, N., Raugei, M., Pons, A., Vasileiadis, N., Ong, H. and Casullo, L., “Environmental Challenges through the Life Cycle of Battery Electric Vehicles,” Directorate-General for Internal Policies, Policy Department for Structural and Cohesion Policies, PE 733.112. Study Requested by the TRAN Committee (2023). https://research4committees.blog/2023/03/27/publication-environmental-challenges-through-the-life-cycle-of-battery-electric-vehicles/ (accessed on 22th August 2024).Google Scholar
Breiter, A., Linder, M., Schuldt, T., Siccardo, G. and Vekić, N., Battery recycling takes the driver’s seat. McKinsey & Company, (2023). https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/battery-recycling-takes-the-drivers-seat (accessed on 23th August 2024).Google Scholar
Makuza, B., Tian, Q., Guo, X., Chattopadhyay, K. and Yu, D., “Pyrometallurgical options for recycling spent lithium-ion batteries: A comprehensive review,” J. Power Sources 491, 229622 (2021). doi: 10.1016/j.jpowsour.2021.229622.CrossRefGoogle Scholar
Bae, H. and Kim, Y., “Technologies of lithium recycling from waste lithium ion batteries: A review,” Mater. Adv. 2(10), 32343250 (2021). doi: 10.1039/D1MA00216C.CrossRefGoogle Scholar
Lain, M. J., Brandon, J. and Kendrick, E., "Design strategies for high power vs. high energy lithium ion cells," Batteries 5, 64 (2019). doi: 10.3390/batteries5040064.CrossRefGoogle Scholar
Occupational Safety and Health Administration, Recycling industry safety and health topics (U.S. Department of Labor, n.d.). https://www.osha.gov/green-jobs/recycling (accessed on 23th August 2024).Google Scholar
Quattrucci, L., Ceccarelli, M., Santoro, M. and Russo, M., “Problems and Requirements for the Robotic Disassembly of Lithium-Ion Batteries in the Automotive Industry,” In: Advances in Italian Mechanism Science. IFToMM Italy 2024. Mechanisms and Machine Science (Quaglia, G., Boschetti, G. and Carbone, G., eds.), vol. 164 (Springer, Cham, 2024). doi:10.1007/978-3-031-64569-3_17.Google Scholar
Galin, R., Meshcheryakov, R. and Kamesheva, S., “Distributing in Multi-Agent Robotic System for Human-Robot Interaction Applications,” In: IRC 2020, LNAI 12336 (Ronzhin, A., eds.) (Springer Nature Switzerland AG, 2020) pp. 99106. doi: 10.1007/978-3-030-60337-3_10.Google Scholar
Ceccarelli, M.. Fundamentals of Mechanics of Robotic Manipulation (Kluwer/Springer, Dordrecht, 2004) pp. 3133. 10.1007/978-1-4020-2110-7.10.1007/978-1-4020-2110-7CrossRefGoogle Scholar
IFR (International Federation of Robotics) World Robotics, World Robotics (2024). https://ifr.org/img/worldrobotics/Press_Conference_2024.pdf (accessed on 3rd December 2024).Google Scholar
ISTAT, La struttura del costo del laoro in Italia -ANNO, (2022–2020). https://www.istat.it/it/files/2022/12/Struttura-del-costo-del-lavoro-in-italia-2020-1.pdf (accessed on 3rd December 2024).Google Scholar
Kroll, E. and Hanft, A. T., “Quantitative evaluation of product disassembly for recycling,” Res. Eng. Des. 10(1), 114 (1998). doi: 10.1007/BF01580266.CrossRefGoogle Scholar
Saha, S., Mukherjee, A., Das, S. and Hoseini, B.. Intelligent Task Repeatability of an Industrial Robotic Arm. In: 2016 IEEE 7th Power India International Conference (PIICON), Bikaner, India (2016) pp. 15. doi: 10.1109/POWERI.2016.8077314.CrossRefGoogle Scholar
Lee, Y.-H. and Weng, J., “An ergonomic design and performance evaluation of handy scanners by males,” Appl. Ergonom. 26(6), 425430 (1995). doi: 10.1016/0003-6870(95)00070-4.CrossRefGoogle ScholarPubMed
Ministry of Employment and Labor, Statistics on occupational accidents in 2016,” Korea Occupational Safety & Health Agency (2017). http://www.kosha.or.kr/www/boardView.do?contentId=373086&menuId=554&boardType=A2 (accessed on 23th August 2024).Google Scholar
Merlino, L., Rosecrance, J., Anton, D. and Cook, T., “Symptoms of musculoskeletal disorders among apprentice construction workers,” Appl. Occupat. Environ. Hygiene 18(1), 5764 (2003). doi: 10.1080/10473220301391.CrossRefGoogle ScholarPubMed
Bazaluk, O., Tsopa, V., Cheberiachko, Y. I., Deryugin, O. V., Radchuk, D., Borovytskyi, O. and Lozynskyi, V., “Ergonomic risk management process for safety and health at work,” Front. Public Health 11, 1253141 (2023). doi: 10.3389/fpubh.2023.1253141.CrossRefGoogle ScholarPubMed
Ispășoiu, A., Milosan, I., Gabor, C. and Oancea, G., “A new methodology for validation of the ergonomics risk assessment in industry,” Processes 11(12), 3261 (2023). doi: 10.3390/pr11123261.CrossRefGoogle Scholar
Jeong, J., Park, SJ., Son, WH. and Mok, S. H., “Injury risk analysis for product disassembly and reassembly process in remanufacturing,” J. Korean Soc. Safety 33(ue 2), 112123 (2018). doi: 10.14346/JKOSOS.2018.33.2.112.Google Scholar
SIST, EN 50129: 2019, Railway Applications – Communication, Signaling and Processing Systems – Safety Related Electronic Systems for Signaling (Slovenian Institute for Standardization, Ljubljana, 2019).Google Scholar
United States Department of Defense, MIL-STD-882B: Standard Practice for System Safety (U.S. Government Printing Office, Washington, 1987).Google Scholar
Desai, A. and Mital, A., “Evaluation of disassemblability to enable design for disassembly in mass production,” Int. J. Industr. Ergonom. 32(4), 265281 (2003). doi: 10.1016/S0169-8141(03)00067-2.CrossRefGoogle Scholar
Peng, Q. and Chung, C., “Analysis of part accessibility in product disassembly,” Comput.-Aided Des. Appl. 4(1-4), 112 (2013). doi: 10.1080/16864360.2007.10738503.Google Scholar
The Health and Safety Executive (HSE). https://www.hse.gov.uk/msd/uld/art/posture.htm (accessed on 23th August 2024).Google Scholar
Ranz, F., Hummel, V. and Sihn, W., “Capability-based task allocation in human-robot collaboration,” Procedia Manuf. 9, 182189 (2017). doi: 10.1016/j.promfg.2017.04.011.CrossRefGoogle Scholar
Bänziger, T., Kunz, A. and Wegener, K., “Optimizing human-robot task allocation using a simulation tool based on standardized work descriptions,” J. Intell. Manuf. 31(7), 16351648 (2020). doi: 10.1007/s10845-018-1411-1.CrossRefGoogle Scholar
Kheirabadi, M., Keivanpour, S., Chinniah, Y. and Frayret, J. M., “A review on collaborative robot assembly line balancing problems,” IFAC-PapersOnLine 55(10), 27792784 (2022). doi: 10.1016/j.ifacol.2022.10.151.CrossRefGoogle Scholar
Malik, A. A. and Bilberg, A., “Complexity-based task allocation in human-robot collaborative assembly,” Ind. Robot. 46(4), 471480 (2019). doi: 10.1108/IR-11-2018-0231.CrossRefGoogle Scholar
Robots, U., “UR10 User Manual (Universal Robots A/S, 2021).Google Scholar
Ståhle, L. and Wold, S., “Analysis of variance (ANOVA),” Chemometr. Intell. Lab. 6(4), 259272 (1989). doi: 10.1016/0169-7439(89)80095-4.CrossRefGoogle Scholar
Fleischmann, J., Hanicke, M., Horetsky, E., Ibrahim, D., Jautelat, S., Linder, M., Schaufuss, P., Torscht, L. and van de Rijt, A., Battery 2030: Resilient, Sustainable, and Circular (McKinsey & Company, 2023). https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/battery-2030-resilient-sustainable-and-circular (accessed on 26th August 2024).Google Scholar
Report: Kwade A, Bärwaldt G (eds.),” In: LithoRec: Recycling Von Lithium-Ionen-Batterien (Cuvillier, Göttingen, 2012).Google Scholar
Wegener, K., Andrew, S., Raatz, A., Dröder, K. and Herrmann, C., “Disassembly of electric vehicle batteries using the example of the audi Q5 hybrid system,” Proc. CIRP 23, 155160 (2014). doi: 10.1016/j.procir.2014.10.098;.CrossRefGoogle Scholar
U.S. Department of Energy, Electric Vehicle Batteries (Alternative Fuels Data Center, n.d.). https://afdc.energy.gov/vehicles/electric-batteries (accessed on 26th August 2024).Google Scholar
Zang, Y. and Wang, Y.. Robotic Disassembly of Electric Vehicle Batteries: An Overview. In: 2022 27th International Conference on Automation and Computing (ICAC), Bristol, UK (2022) pp. 16. doi: 10.1109/ICAC55051.2022.9911109.CrossRefGoogle Scholar
Robots, U., DH Parameters for Calculations of Kinematics and Dynamics (Universal Robots, https://www.universal-robots.com/articles/ur/application-installation/dh-parameters-for-calculations-of-kinematics-and-dynamics/ (accessed on 28th August 2024).Google Scholar
Russo, M., Zhang, D., Liu, X. J. and Xie, Z., “A review of parallel kinematic machine tools: Design, modeling, and applications,” Int. J. Mach. Tools Manuf. 104118, 104118 (2024). doi: 10.1016/j.ijmachtools.2024.104118.CrossRefGoogle Scholar
Diakoulaki, D., Mavrotas, G. and Papayannakis, L., “Determining objective weights in multiple criteria problems: The critic method,” Comput. Oper. Res. 22(7), 763770 (1995).10.1016/0305-0548(94)00059-HCrossRefGoogle Scholar
Russo, M., “Measuring performance: Metrics for manipulator design, control, and optimization,” Robotics 12(1), 4 (2022). doi: 10.3390/robotics12010004.CrossRefGoogle Scholar
Siciliano, B., Sciavicco, L., Villani, L. and Oriolo, G.. Robotics: Modelling, Planning and Control (Springer, 2009).10.1007/978-1-84628-642-1CrossRefGoogle Scholar
https://www.pololu.com/product/2828 (last accessed on 28th March 2025).Google Scholar