Hostname: page-component-76c49bb84f-rx8cm Total loading time: 0 Render date: 2025-07-05T20:18:22.085Z Has data issue: false hasContentIssue false

Effects of a protocol using a robotic device in the rehabilitation of wrist function in adults with stroke sequelae: pilot study

Published online by Cambridge University Press:  04 July 2025

João V. L. Menezes
Affiliation:
Federal University of Uberlândia (UFU), Uberlândia, Brazil
Jonathan Tran
Affiliation:
Institut National Des Sciences Appliquées Hauts-de-France (INSA), Aulnoy-lez-Valenciennes, France
Gabriella F. Garcia
Affiliation:
Federal University of Uberlândia (UFU), Uberlândia, Brazil
Marcos S. Kishi
Affiliation:
Federal University of Uberlândia (UFU), Uberlândia, Brazil
Rogério S. Gonçalves*
Affiliation:
Federal University of Uberlândia (UFU), Uberlândia, Brazil
*
Corresponding author: Rogério S. Gonçalves; Email: rsgoncalves@ufu.br

Abstract

Stroke is a prevalent neurological event that often induces significant motor impairments in the upper extremities, such as hemiplegia, which impacts bimanual coordination and fine motor skills. Robotic-assisted therapy has gained prominence as a contemporary rehabilitation modality, providing augmented motor repetitions and proprioceptive feedback, thereby potentiating neuroplasticity and functional recovery. This pilot study aimed to examine the therapeutic efficacy of a robotic intervention for wrist rehabilitation in two post-stroke adults aged 50–70 years. The intervention protocol, implemented biweekly over four weeks, encompassed 45-minute sessions consisting of passive muscle elongation (5 min) and robotic-facilitated exercises targeting pronation-supination (10 min), flexion-extension (10 min), and radial-ulnar deviation (10 min). Outcome measures included pre- and post-intervention assessments utilizing the motor activity log, Fugl-Meyer Scale, and robotic metrics for muscular strength. Results indicated enhancements in joint range of motion, motor precision, and neuromuscular control, with patient “B” demonstrating superior improvements, particularly in complex motor patterns. In contrast, patient “A” exhibited attenuated progress, attributable to pronounced baseline deficits and fatigue. Specific gains were observed in flexion-extension for patient “A” and pronation-supination for patient “B,” with minimal advancements in radial-ulnar deviation across both subjects. These findings provide preliminary evidence supporting the efficacy of robotic-assisted therapy in motor rehabilitation post-stroke with the novel proposed wrist rehabilitation device.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Sacco, R. L., Kasner, S. E., Broderick, J. P., Caplan, L. R., Connors, J. J., Culebras, A., Elkind, M. S., George, M. G., Hamdan, A. D., Higashida, R. T. and Hoh, B. L., “An updated definition of stroke for the 21st century: A statement for healthcare professionals from the American Heart association/American stroke association,” J. Am. Heart Assoc. 44(7), 20642089 (2013). doi: 10.1161/STR.0b013e318296aeca.Google ScholarPubMed
Tsao, C. W., Aday, A. W., Almarzooq, Z. I., Anderson, C. A. M., Arora, P., Avery, C. L., Baker-Smith, C. M., Beaton, A. Z., Boehme, A. K., Buxton, A. E., Commodore-Mensah, Y., Elkind, M. S. V., Evenson, K. R., Eze-Nliam, C., Fugar, S., Generoso, G., Heard, D. G., Hiremath, S., Ho, J. E. and Martin, S. S., “Heart disease and stroke statistics – 2023 update: A report from the American heart association,” Circulation 147(8), E93E621 (2023). doi: 10.1161/CIR.0000000000001123.CrossRefGoogle ScholarPubMed
Gonçalves, R. S., L.S., FURTADO., L.P., MORAES., G., CARBONE. and M., CECCARELLI., “A fairly simple mechatronic device for training human wrist motion,” Int. J. Adv. Robot. Syst. 1(6), 115 (2020). doi: 10.1177/1729881420974286.Google Scholar
Rahayu, U. B., Wibowo, S., Setyopranoto, I. and Hibatullah Romli, M., “Effectiveness of physiotherapy interventions in brain plasticity, balance and functional ability in stroke survivors: A randomized controlled trial,” Neuro Rehabil. 47(4), 463470 (2020). doi: 10.3233/NRE-203210.Google ScholarPubMed
Liaw, M. Y., Hsu, C. H., Leong, C. P., Liao, C. Y., Wang, L. Y., Lu, C. H. and Lin, M. C., “Respiratory muscle training in stroke patients with respiratory muscle weakness, dysphagia, and dysarthria – A prospective randomized trial,” Medicine (Baltimore) 99(10), e19337 (2020). doi: 10.1097/MD.0000000000019337.CrossRefGoogle ScholarPubMed
Alves, T., Gonçalves, R.ério S. and Carbone, G., “Quantitative progress evaluation of post-stroke patients using a novel bimanual cable-driven robot,” J. Bionic. Eng. 1(6), 11343 (2021). doi: 10.1007/s42235-021-00102-y.Google Scholar
Li, X., He, Y., Wang, D. and Rezaei, M. J., “Stroke rehabilitation: From diagnosis to therapy,” Front. Neurol. 15, 1402729 (2024). doi: 10.3389/fneur.2024.1402729.CrossRefGoogle ScholarPubMed
Garcia, F. G., Gonçalves, R.ério S. and Carbone, G., “A review of wrist rehabilitation robots and highlights needed for new devices,” Machines 12(5), 315 (2024). doi: 10.3390/machines12050315.CrossRefGoogle Scholar
Kin, K.-H. and Sang-Hun, JANG., “Effects of task-specific training after cognitive sensorimotor exercise on proprioception, spasticity, and gait speed in stroke patients: A randomized controlled study,” Medicina (Kaunas) 57(10), 1098 (2021). doi: 10.3390/medicina57101098.Google Scholar
Wu, J., Cheng, H., Zhang, J., Yang, S. and Cai, S., “Robot-assisted therapy for upper extremity motor impairment after stroke: A systematic review and meta-analysis,” Phys. Ther. 101(4), pzab010 (2021). doi: 10.1093/ptj/pzab010.CrossRefGoogle ScholarPubMed
Jiang, S., You, H., Zhao, W. and Zhang, M., “Effects of short-term upper limb robot-assisted therapy on the rehabilitation of sub-acute stroke patients,” Technol. Health Care 29(2), 295303 (2021). doi: 10.3233/THC-202127.CrossRefGoogle Scholar
Cho, K. H. and Song, W. K., “Effects of two different robot-assisted arm training on upper limb motor function and kinematics in chronic stroke survivors: A randomized controlled trial,” Top. Stroke Rehabil. 28(3), 241250 (2021). doi: 10.1080/10749357.2020.1804699.HUO.CrossRefGoogle ScholarPubMed
Hesse, S., Schulte-Tigges, G., Konrad, M., Bardeleben, A. and Werner, C., “Robot-assisted arm trainer for the passive and active practice of bilateral forearm and wrist movements in hemiparetic subjects,” Arch. Phys. Med. Rehabil. 84(6), 915920 (2003). doi: 10.1016/s0003-9993(02)04954-7.CrossRefGoogle ScholarPubMed
Rose, C. G., Pezent, E., Kann, C. K., Deshpande, A. D. and O’Malley, M. K., “Evaluation of wrist movement with robotic devices,” IEEE Trans. Neural Syst. Rehabable. Eng. 26(8), 15851595 (2018). doi: 10.1109/TNSRE.2018.2853143.CrossRefGoogle Scholar
Yue, Z., Zhang, X. and Wang, J., “Hand rehabilitation robotics on poststroke motor recovery,” Behav. Neurol. 2017, 3908135–20 (2017). doi: 10.1155/2017/3908135.Google ScholarPubMed
Al-Mayahi, W. and Al-Fahaam, H., “A brief review of rehabilitation wearable robots for the upper and lower limbs,” Int. J. Emerging Trends Eng. Res. 11(9), 291306 (2023). doi: 10.30534/ijeter/2023/021192023.Google Scholar
Krebs, H. I., Volpe, B. T., Williams, D., Celestino, J., Charles, S. K., Lynch, D. and Hogan, N., “Robot-assisted neurorehabilitation: A robot for wrist rehabilitation,” IEEE Trans Neural Syst Rehabil Eng 15(3), 327335 (2007). doi: 10.1109/TNSRE.2007.903899 PMID: 17894265; PMCID: PMC2733849.CrossRefGoogle Scholar
Durand, S., Rohan, C. P., Hamilton, T., Skalli, W. and Krebs, H. I., “Passive wrist stiffness: The influence of handedness,” IEEE Trans. Biomed. Eng. 66(3), 656665 (2019). doi: 10.1109/TBME.2018.2853591.CrossRefGoogle ScholarPubMed
Kadivar, Z., Sullivan, J. L., Eng, D. P., Pehlivan, A. U., O’Malley, M. K., Yozbatiran, N., Berliner, J., Boake, C. and Francisco, G. E., “Rice wrist robotic device for upper limb training: Feasibility study and case report of two quadriplegic persons with spinal cord injury,” Int. J. Biol. Eng. 2(4), 2738 (2012). doi: 10.5923/j.ijbe.20120204.01.CrossRefGoogle Scholar
Pehlivan, A. U., Sergi, F., Erwin, A., Yozbatiran, N., Francisco, G. E. and O’Malley, M. K., “Design and validation of the RiceWrist-S exoskeleton for robotic rehabilitation after incomplete spinal cord injury,” Robotica 32(8), 14151431 (2014). doi: 10.1017/S0263574714001490.CrossRefGoogle Scholar
Perry, J. C., Rosen, J. and Burns, S., “Upper-limb powered exoskeleton design,” IEEE/ASME Trans. Mechatron. 12(4), 408417 (2007). doi: 10.1109/TMECH.2007.901934.CrossRefGoogle Scholar
Oblak, J., Cikajlo, I. and Matjacić, Z., “Universal haptic unit: A robot for rehabilitation of arms and wrists,” IEEE Trans. Neural Syst. Rehabil. Eng. 18(3), 293302 (2010). doi: 10.1109/TNSRE.2009.2034162.CrossRefGoogle Scholar
Squeri, V., Masia, L., Giannoni, P., Sandini, G. and Morasso, P., “Wrist rehabilitation in chronic stroke patients by means of adaptive, progressive robot-aided therapy,” IEEE Trans. Neural Syst. Rehabil. Eng. 22(2), 312325 (2014). doi: 10.1109/TNSRE.2013.2250521.CrossRefGoogle ScholarPubMed
Amirabdollahian, F., Ates, S., Basteris, A., Cesario, A., Buurke, J., Hermens, H., Hofs, D., Johansson, E., Mountain, G., Nasr, N. and Nijenhuis, S., “Design, development and implantation of a hand/wrist exoskeleton for home rehabilitation after stroke - SCRIPT project,” Robotica 32(8), 13311346 (2014). doi: 10.1017/S0263574714002288.CrossRefGoogle Scholar
Bartlett, N. W., Lyau, V., Raiford, W. A., Holland, D., Gafford, J. B., Ellis, T. D. and Walsh, C. J., “A soft robotic orthosis for wrist rehabilitation,” J. Med. Devices 9(3), 030918 (2015). doi: 10.1115/1.4030554.CrossRefGoogle Scholar
Buongiorno, D., Sotgiu, E., Leonardis, D., Marcheschi, S., Solazzi, M. and Frisoli, A., “WRES: A new 3 DoF WRist exoSkeleton with tendon-oriented differential transmission for neuro-rehabilitation and teleoperation,” IEEE Robot. Automat. 3(3), 21522159 (2018). doi: 10.1109/LRA.2018.2810943.CrossRefGoogle Scholar
Khor, K. X., Chin, P. J. H., Hisyam, A. R., Yeong, C. F., Narayanan, A. L. T. and Su, E. L. M., “Development of CR2-haptic: A compact and portable rehabilitation robot for wrist and forearm training,” In: Proc. IEEE Conf. Biomed. Eng. Sci. (2014) pp. 424429 Google Scholar
Higuma, T., Kiguchi, K. and Arata, J., “Low-profile two-degree-of-freedom wrist exoskeleton device using multiple spring blades,” IEEE Robot. Autom. Lett. 3(1), 305311 (2018).10.1109/LRA.2017.2739802CrossRefGoogle Scholar
Jiang, T. T., Qian, Z. Q., Lin, Y., Bi, Z. M., Liu, Y. F. and Zhang, W. J.. Analysis of Virtual Environment Haptic Robotic Systems for a Rehabilitation of Post-Stroke Patients. In: 2017 IEEE International Conference on Industrial Technology (ICIT), Toronto, ON, Canada (2017) pp. 738742. doi: 10.1109/ICIT.2017.7915451 CrossRefGoogle Scholar
Gao, M., Zhang, W., Qian, Z. and Chen, A.. Automatic Assessment of the Wrist Movement Function in a Haptic Virtual Environment for Home-Based Stroke Rahabilitation. In: 2018 IEEE Canadian Conference on Electrical & Computer Engineering (CCECE), Quebec, QC, Canada (2018) pp. 14. doi: 10.1109/CCECE.2018.8447542 CrossRefGoogle Scholar
Yang, C., Lin, Y., Cai, M., Qian, Z., Kivol, J. and Zhang, W., “Cognitive fatigue effect on rehabilitation task performance in a haptic virtual environment system,” Journal of Rehabilitation and Assistive Technologies Engineering 4, 2055668317738197 (2017). doi: 10.1177/2055668317738197.CrossRefGoogle Scholar
Chen, P., Qian, Z., Song, Z., Yang, C. and Zhang, W.. Objective Assessment of the Wrist Function Loss of Post-Stroke Patients in Haptic Virtual Environment based on Neural Network and Support Vector Machine. In: 2022 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA), Dalian, China (2022) pp. 106112. doi: 10.1109/ICAICA54878.2022.9844576 CrossRefGoogle Scholar
Wang, F., Qian, Z., Lin, Y. and Zhang, W., “Design and rapid construction of a cost-effective virtual haptic device,” IEEE/ASME Trans. Mechatron. 26(1), 6677 (2021). doi: 10.1109/TMECH.2020.3001205.Google Scholar
He, R., Zhang, B., Bi, Z. and Zhang, W.. Development of a Hybrid Haptic Device with High Degree of Motion Decoupling. In: 2022 28th International Conference on Mechatronics and Machine Vision in Practice (M2VIP), Nanjing, China (2022) pp. 15. doi: 10.1109/M2VIP55626.2022.10041070 CrossRefGoogle Scholar
Andrade, K. O., Fernandes, G., Martins, J., Roma, V., Joaquim, R. C. and Caurin, G. A. P.. Rehabilitation Robotics and Serious Games: An Initial Architecture for Simultaneous Players. In: IEEE Biosignals and Biorobotics Conference (BRC), 2013 ISSNIP (BRC2013) (2013) pp. 1820.Google Scholar
Huang, F. C., Gillespie, R. B. and Kuo, A. D., “Human adaptation to interaction forces in visuo-motor coordination,” IEEE Trans. Neur Syst. Reh. 15(3), 390399 (2007). doi: 10.1109/TNSRE.2007.90395.Google Scholar
Taub, E., Miller, N. E., Novack, T. A., Cook, E. W., Fleming, W. C., Nepomuceno, C. S., Connell, J. S. and Crago, J. E., “Technique to improve chronic motor deficit after stroke,” Arch. Phys. Med. Rehab. 74(4), 347354 (1993).Google ScholarPubMed
Winstein, C. J., Miller, J. P., Blanton, S., Taub, E., Uswatte, G., Morris, D., Nichols, D. and Wolf, S., “Methods for a multisite randomized trial to investigate the effect of constraint-induced movement therapy in improving upper extremity function among adults recovering from a cerebrovascular stroke,” Neurorehab. Neural Re. 17(3), 137152 (2003). doi: 10.1177/0888439003255511.CrossRefGoogle ScholarPubMed
Fugl-Meyer, A. R., Jääskö, L., Leyman, I., Olsson, S. and Steglind, S., “The post-stroke hemiplegic patient. 1. a method for evaluation of physical performance,” Scand. J. Rehabil. Med. 7(1), 1331 (1975).10.2340/1650197771331CrossRefGoogle ScholarPubMed
Katalinic, O. M., Harvey, L. A. and Herbert, R. D., “Effectiveness of stretch for the treatment and prevention of contractures in people with neurological conditions: A systematic review,” Phys. Ther. 91(1), 1124 (2011). doi: 10.2522/ptj.20090265.CrossRefGoogle ScholarPubMed
Lo, A. C., Guarino, P. D., Richards, L. G., Haselkorn, J. K., Wittenberg, G. F., Federman, D. G., Ringer, R. J., Wagner, T. H., Krebs, H. I., Volpe, B. T., Bever, C. T. Jr, Bravata, D. M., Duncan, P. W., Corn, B. H., Maffucci, A. D., Nadeau, S. E., Conroy, S. S., Powell, J. M., Huang, G. D. and Peduzzi, P., “Robot-assisted therapy for long-term upper-limb impairment after stroke,” N. Engl. J. Med. 362(19), 17721783 (2010). doi: 10.1056/NEJMoa0911341.CrossRefGoogle ScholarPubMed