Hostname: page-component-5b777bbd6c-cp4x8 Total loading time: 0 Render date: 2025-06-20T19:50:53.253Z Has data issue: false hasContentIssue false

Design and experimental validation of IDA-PBC-based flight control for quadrotors

Published online by Cambridge University Press:  18 June 2025

Jesús-Renato Montoya-Morales
Affiliation:
Tecnológico Nacional de México, IT de Hermosillo, Hermosillo 83170, Mexico
María-Eusebia Guerrero-Sánchez
Affiliation:
Tecnológico Nacional de México, IT de Hermosillo, Hermosillo 83170, Mexico IIxM SECIHTI-Tecnológico Nacional de México, IT Hermosillo, Hermosillo 83170, Mexico
Guillermo Valencia-Palomo*
Affiliation:
Tecnológico Nacional de México, IT de Hermosillo, Hermosillo 83170, Mexico
Omar Hernández-González
Affiliation:
Tecnológico Nacional de México, IT de Hermosillo, Hermosillo 83170, Mexico
Francisco-Ronay López-Estrada
Affiliation:
TURIX-Dynamics Diagnosis and Control Group, Tecnológico Nacional de México, IT Tuxtla Gutiérrez, Tuxtla Gutierrez 29050, Mexico
Luis C. Félix-Herrán
Affiliation:
School of Engineering and Sciences, Tecnológico de Monterrey, Hermosillo 83000, Mexico
*
Corresponding author: Guillermo Valencia-Palomo; Email: gvalencia@hermosillo.tecnm.mx

Abstract

This paper presents the design and experimental validation of a robust flight control strategy for quadrotor unmanned aerial vehicles (UAVs) based on the Interconnection and Damping Assignment Passivity-Based Control (IDA-PBC) methodology. The proposed approach is specifically tailored to the Parrot Bebop 2, a commercial UAV. The IDA-PBC control law is derived using the Hamiltonian model of the UAV dynamics obtained from experimental data to represent the dynamics of all six degrees of freedom, including translational and rotational motions. The control strategy was validated through numerical simulations and experimental tests conducted in an indoor flight setup using MATLAB, Robot Operating System, and an OptiTrack motion capture system. Numerical and experimental results demonstrate that the controller effectively tracks desired flight trajectories, ensuring stable and robust performance.

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Ahmadi, K., Asadi, D., Merheb, A., Nabavi-Chashmi, S.-Y. and Tutsoy, O., “Active fault-tolerant control of quadrotor uavs with nonlinear observer-based sliding mode control validated through hardware in the loop experiments,” Control Eng. Pract. 137, 105557 (2023).10.1016/j.conengprac.2023.105557CrossRefGoogle Scholar
Ahn, H., Hu, M., Chung, Y. and You, K., “Sliding-mode control for flight stability of quadrotor drone using adaptive super-twisting reaching law,” Drones. 7(8), 522 (2023).10.3390/drones7080522CrossRefGoogle Scholar
Mardlijah, Z. N. A., “Control design of quadcopter using linear quadratic gaussian (LQG),” In: 2022 International Conference on Computer Engineering, Network, and Intelligent Multimedia (CENIM), IEEE (2022) pp. 192196.Google Scholar
Alsaade, F. W., Jahanshahi, H., Yao, Q., Al-zahrani, M. S. and Alzahrani, A. S., “A new neural network-based optimal mixed ${H}_2$ / ${H}_\infty$ control for a modified unmanned aerial vehicle subject to control input constraints,” Adv. Space Res. 71(9), 36313643 (2023).10.1016/j.asr.2022.02.012CrossRefGoogle Scholar
Arrieta, O., Campos, D., Rico-Azagra, J., Gil-Martínez, M., Rojas, J. D. and Vilanova, R., “Model-based optimization approach for PID control of pitch–roll UAV orientation,” Mathematics. 11(15), 3390 (2023).10.3390/math11153390CrossRefGoogle Scholar
Boualem, N., Lotfi, M., Abderrezak, G., Abdelhak, B., Kadda, Z. M. and Mohammed, T., “Metaheuristic optimization techniques of a sliding-mode controller gains applied to quadrotor,In: AIP Conference Proceedings, Vol. 2536, AIP Publishing (2023).10.1063/5.0118909CrossRefGoogle Scholar
Cariño, J., Abaunza, H. and Castillo, P., “A fully-actuated quadcopter representation using quaternions,Int. J. Control, 96(12), 31323154 (2022). https://doi.org/10.1080/00207179.2022.2129789 Google Scholar
El-Badawy, A. A. and Bakr, M. A., “Quadcopter aggressive maneuvers along singular configurations: An energy-quaternion based approach,” J. Control Sci. Eng. 2016, 110 (2016).10.1155/2016/7324540CrossRefGoogle Scholar
Engel, J., Sturm, J. and Cremers, D., “Scale-aware navigation of a low-cost quadrocopter with a monocular camera,” Robot. Auton. Syst (RAS). 62(11), 16461656 (2014).10.1016/j.robot.2014.03.012CrossRefGoogle Scholar
García-Beltrán, C. D., Miranda-Araujo, E. M., Guerrero-Sánchez, M. E., Valencia-Palomo, G., Hernández-González, O. and Gómez-Peñate, S., “Passivity-based control laws for an unmanned powered parachute aircraft,” Asian J. Control. 23(5), 20872096 (2021).10.1002/asjc.2540CrossRefGoogle Scholar
Gehrig, D., Göttgens, M., Paden, B. and Frazzoli, E., Scale-Corrected Monocular-Slam for the AR.Drone 2.0 (ETH Zürich, 2017).Google Scholar
Guerrero-Sanchez, M. E., Abaunza, H., Castillo, P., Lozano, R., Garcia-Beltran, C. and Rodriguez-Palacios, A., “Passivity-based control for a micro air vehicle using unit quaternions,” Appl. Sci. 7(1), 13 (2016).10.3390/app7010013CrossRefGoogle Scholar
Guerrero-Sanchez, M. E., Abaunza, H., Castillo, P., Lozano, R. and García-Beltrán, C. D., “Quadrotor energy-based control laws: A unit-quaternion approach,” J. Intell. Robot. Syst. 88(2–4), 347377 (2017).10.1007/s10846-017-0528-3CrossRefGoogle Scholar
Guerrero-Sánchez, M.-E., Hernández-González, O., Valencia-Palomo, G., López-Estrada, F.-R., Rodríguez-Mata, A.-E. and Garrido, J., “Filtered observer-based IDA-PBC control for trajectory tracking of a quadrotor,” IEEE Access. 9, 114821114835 (2021).10.1109/ACCESS.2021.3104798CrossRefGoogle Scholar
Guerrero-Sánchez, M. E., Hernández-González, O., Valencia-Palomo, G., Mercado-Ravell, D. A., López-Estrada, F. R. and Hoyo-Montaño, J. A., “Robust IDA-PBC for under-actuated systems with inertia matrix dependent of the unactuated coordinates: Application to a UAV carrying a load,” Nonlinear Dynam. 105(4), 32253238 (2021).10.1007/s11071-021-06776-7CrossRefGoogle Scholar
Izaguirre-Espinosa, C., Muñoz-Vázquez, A. J., Sánchez-Orta, A., Parra-Vega, V. and Castillo, P., “Attitude control of quadrotors based on fractional sliding modes: Theory and experiments,” IET Control Theory Appl. 10(7), 825832 (2016).10.1049/iet-cta.2015.1048CrossRefGoogle Scholar
Jung, W. and Bang, H., “Fault and failure tolerant model predictive control of quadrotor UAV,” Int. J. Aeronaut. Space. 22(3), 663675 (2021).10.1007/s42405-020-00331-1CrossRefGoogle Scholar
Kidambi, K. B., Fermüller, C., Aloimonos, Y. and Xu, H., “Robust nonlinear control-based trajectory tracking for quadrotors under uncertainty,” IEEE Control Syst. Lett. 5(6), 20422047 (2020).10.1109/LCSYS.2020.3044833CrossRefGoogle Scholar
Montoya-Morales, J. R., Guerrero-Sánchez, M. E., Valencia-Palomo, G., Hernández-González, O., López-Estrada, F. R. and Hoyo-Montaño, J. A., “Real-time robust tracking control for a quadrotor using monocular vision,” In: Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering (2023) pp. 09544100231158265.Google Scholar
Ortega, R., Spong, M. W., Gómez-Estern, F. and Blankenstein, G., “Stabilization of a class of underactuated mechanical systems via interconnection and damping assignment,” IEEE Trans. Autom. Control. 47(8), 12181233 (2002).10.1109/TAC.2002.800770CrossRefGoogle Scholar
Rosaldo-Serrano, M. A. and Aranda-Bricaire, E., “Trajectory tracking for a commercial quadrotor via time-varying backstepping,” IFAC-PapersOnLine. 51(13), 532536 (2018).10.1016/j.ifacol.2018.07.334CrossRefGoogle Scholar
Rosaldo-Serrano, M. A. and Aranda-Bricaire, E., “Trajectory tracking for a commercial quadrotor,” In: 2019 6th International Conference on Control, Decision and Information Technologies (CoDIT), IEEE (2019) pp. 16161621.10.1109/CoDIT.2019.8820415CrossRefGoogle Scholar
Ryalat, M., Laila, D. S. and Torbati, M. M., “Integral IDA-PBC and PID-like control for port-controlled Hamiltonian systems,” In: 2015 American Control Conference (ACC), IEEE (2015) pp. 53655370.10.1109/ACC.2015.7172178CrossRefGoogle Scholar
Santiaguillo-Salinas, J., Rosaldo-Serrano, M. A. and Aranda-Bricaire, E., “Observer-based time-varying backstepping control for parrot’s AR.Drone 2.0,” IFAC-PapersOnLine. 50(1), 1030510310 (2017).10.1016/j.ifacol.2017.08.1497CrossRefGoogle Scholar
Souza, C., Raffo, G. V. and Castelan, E. B., “Passivity based control of a quadrotor UAV,” IFAC Proceedings. 47(3), 31963201 (2014).Google Scholar
Thusoo, R., Jain, S. and Bangia, S., “Path planning of quadrotor using A* and LQR,” In: Recent Developments in Electrical and Electronics Engineering: Select Proceedings of ICRDEEE 2022, Springer (2023) pp. 227238.10.1007/978-981-19-7993-4_19CrossRefGoogle Scholar
Valavanis, K. P. and Vachtsevanos, G. J., Handbook of Unmanned Aerial Vehicles (Vol. 1, Springer, 2015).10.1007/978-90-481-9707-1CrossRefGoogle Scholar
Villa, D. K. D., Brandão, A. S., Carelli, R. and Sarcinelli-Filho, M., “Cooperative load transportation with two quadrotors using adaptive control,” IEEE Access 9, 129148129160 (2021).Google Scholar
von Stumberg, L., Usenko, V., Engel, J., Stückler, J. and Cremers, D., “From monocular slam to autonomous drone exploration,” In: 2017 European Conference on Mobile Robots (ECMR), IEEE (2017) pp. 18.Google Scholar
Wang, X., Sun, S., van Kampen, E.-J. and Chu, Q., “Quadrotor fault tolerant incremental sliding mode control driven by sliding mode disturbance observers,” Aerosp. Sci. Technol. 87, 417430 (2019).Google Scholar
Zhao, L., Liu, Y., Peng, Q. and Zhao, L., “A dual aircraft maneuver formation controller for MAV/UAV based on the hybrid intelligent agent,” Drones. 7(5), 282 (2023).10.3390/drones7050282CrossRefGoogle Scholar