Published online by Cambridge University Press: 01 July 1998
We have previously shown that the yeast gene PUS1 codes for a tRNA:pseudouridine synthase and that recombinant Pus1p catalyzes, in an intron-dependent way, the formation of Ψ34 and Ψ36 in the anticodon loop of the yeast minor tRNAIle in vitro (Simos G et al., 1996, EMBO J 15:2270–2284). Using a set of T7 transcripts of different tRNA genes, we now demonstrate that yeast pseudouridine synthase 1 catalyzes in vitro pseudouridine formation at positions 27 and/or 28 in several yeast cytoplasmic tRNAs and at position 35 in the intron-containing tRNATyr (anticodon GUA). Thus, Pus1p not only displays a broad specificity toward the RNA substrates, but is also capable of catalyzing the pseudouridine (Ψ) formation at distinct noncontiguous sites within the same tRNA molecule. The cell-free extract prepared from the yeast strain bearing disrupted gene PUS1 is unable to catalyze the formation of Ψ27, Ψ28, Ψ34, and Ψ36 in vitro, however, Ψ35 formation in the intron-containing tRNATyr(GUA) remains unaffected. Thus, in yeast, only one gene product accounts for tRNA pseudouridylation at positions 27, 28, 34, and 36, whereas for position 35 in tRNATyr, another site-specific tRNA:pseudouridine synthase with overlapping specificity exists. Mapping of pseudouridine residues present in various tRNAs extracted from the PUS1-disrupted strain confirms the in vitro data obtained with the recombinant Pus1p. In addition, they suggest that Pus1p is implicated in modification at positions U26, U65, and U67 in vivo.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.