Published online by Cambridge University Press: 01 July 2000
RNA helices that recapitulate sequences of the tRNA acceptor stem, including the 3′ NCCA nucleotides, can be substrates for aminoacyl–tRNA synthetases (Frugier et al., 1994; Hamann & Hou, 1995; Martinis & Schimmel, 1995; Quinn et al., 1995). Although the catalytic efficiency of aminoacylation of RNA helices is reduced from that of the full-length parent tRNA, the specificity is maintained. The specific aminoacylation lies in the ability of aminoacyl–tRNA synthetases to recognize functional groups within the RNA helices. Analysis of tRNA–synthetase structures has suggested a general principle (Rould et al., 1989; Ruff et al., 1991; Arnez & Moras, 1997). The class I synthetases, which attach an amino acid initially to the 2′-OH of the terminal ribose, approach the acceptor and NCCA end from the minor groove side. The class II synthetases, which attach an amino acid to the terminal 3′-OH, approach from the major groove side (Arnez & Moras, 1997). The class-specific approach leads to tRNA–synthetase complexes that are near mirror images of each other and provides a structural rationale for the stereochemistries of aminoacylation. We report here the identification of a functional group in the acceptor end of Escherichia coli tRNACys that is important for the class I cysteine–tRNA synthetase. This functional group makes one of the largest energetic contributions to aminoacylation. However, it is located on the major groove side of the acceptor stem. Kinetic analysis of the contribution of this functional group to aminoacylation suggests new features that are not anticipated from the class-specific approach of synthetases.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.