Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-26T23:06:05.261Z Has data issue: false hasContentIssue false

STRONG COMPLETENESS OF S4 FOR ANY DENSE-IN-ITSELF METRIC SPACE

Published online by Cambridge University Press:  20 June 2013

PHILIP KREMER*
Affiliation:
Department of Philosophy, University of Toronto
*
*DEPARTMENT OF PHILOSOPHY, UNIVERSITY OF TORONTO, 170 ST. GEORGE STREET, TORONTO ON, CANADA, M5R 2M8 E-mail: kremer@utsc.utoronto.ca

Abstract

In the topological semantics for modal logic, S4 is well-known to be complete for the rational line, for the real line, and for Cantor space: these are special cases of S4’s completeness for any dense-in-itself metric space. The construction used to prove completeness can be slightly amended to show that S4 is not only complete, but also strongly complete, for the rational line. But no similarly easy amendment is available for the real line or for Cantor space and the question of strong completeness for these spaces has remained open, together with the more general question of strong completeness for any dense-in-itself metric space. In this paper, we prove that S4 is strongly complete for any dense-in-itself metric space.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

BIBLIOGRAPHY

Aiello, M., van Benthem, J., & Bezhanishvili, G. (2003). Reasoning about space: The modal way. Journal of Logic and Computation, 13, 889920.Google Scholar
Bezhanishvili, G., & Gehrke, M. (2005). Completeness of S4 with respect to the real line: Revisited. Annals of Pure and Applied Logic, 131, 287301.CrossRefGoogle Scholar
Blok, W. (1976). Varieties of Interior Algebras. Dissertation, University of Amsterdam.Google Scholar
Dugundji, J. (1966). Topology. Boston, MA: Allyn and Bacon.Google Scholar
Engelking, R. (1989). General Topology. Berlin, Germany: Heldermann Verlag.Google Scholar
Fine, K. (1974). An ascending chain of S4 logics. Theoria, 40, 110116.CrossRefGoogle Scholar
Gierz, G., Hoffmann, K. H., Keimel, K., Lawson, J. D., Mislove, M., & Scott, D. S. (2003). Continuous Lattices and Domains. Cambridge, UK: Cambridge University Press.Google Scholar
Goldblatt, R. (1980). Diodorean modality in Minkowski spacetime. Studia Logica, 39, 219236.Google Scholar
Hodkinson, I. (2012). Simple completeness proofs for some spatial logics of the real line. Available from: http://www.doc.ic.ac.uk/imh/papers/boxoverR.pdf.Google Scholar
Kremer, P. (forthcoming). The incompleteness of S4 ⊕ S4 for the product space . Studia Logica. A preprint of this paper is available here: http://www.individual.utoronto.ca/philipkremer/onlinepapers/RxR.pdf.Google Scholar
Kremer, P., & Mints, G. (2005). Dynamic topological logic. Annals of Pure and Applied Logic, 131, 133158.Google Scholar
Kuratowski, C. (1922). Sur l’opération de l’Analysis Situs. Fundamenta Mathematicae, 3, 182199.CrossRefGoogle Scholar
Lando, T. (2012). Completeness of S4 for the Lebesgue measure algebra based on the unit interval. Journal of Philosophical Logic, 41, 287316.CrossRefGoogle Scholar
Lando, T., & Sarenac, D. (2011) Fractal Completeness Techniques in Topological Modal Logic: Koch Curve, Limit Tree, and the Real Line. Available from: http://philosophy.berkeley.edu/file/698/FractalCompletenessTechniques.pdf.Google Scholar
Makinson, D. (1966). On some completeness theorems in modal logic. Zeitschrift fr mathematische Logik und Grundlagen der Mathematik, 12, 379384.Google Scholar
McKinsey, J. C. C. (1941). A solution of the decision problem for the Lewis systems S2 and S4, with an application to topology. The Journal of Symbolic Logic, 6, 117134.CrossRefGoogle Scholar
McKinsey, J. C. C., & Tarski, A. (1944). The algebra of topology. Annals of Mathematics, 45, 141191.Google Scholar
Mints, G., & Zhang, T. (2005). A proof of topological completeness for S4 in (0, 1). Annals of Pure and Applied Logic, 133, 231245.CrossRefGoogle Scholar
Rasiowa, H., & Sikorski, R. (1963). The Mathematics of Metamathematics. Państowowe Wydawnictwo Naukowe, Warsaw.Google Scholar
Stone, M. (1936). The theory of representations of Boolean algebras. Transactions of the American Mathematical Society, 40, 37111.Google Scholar
Tarski, A. (1938). Der Ausgangkalkül und die Topologie. Fundamenta Mathematicae, 31, 103134.Google Scholar
van Benthem, J., Bezhanishvili, G., ten Cate, B., & Sarenac, D. (2006). Multimodal logics of products of topologies. Studia Logica, 84, 369392.CrossRefGoogle Scholar
Zakharyaschev, M., Wolter, F., & Chagrov, A. (1997). Advanced modal logic. In Gabbay, D., and Guenther, F., editors. Handbook of Philosophical Logic(second edition), Vol. 3. Dordrecht, The Netherlands: Kluwer Academic Publishers, pp. 83266.Google Scholar