Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
MEADOWS, TOBY
2013.
WHAT CAN A CATEGORICITY THEOREM TELL US?.
The Review of Symbolic Logic,
Vol. 6,
Issue. 3,
p.
524.
Kanovei, Vladimir
Katz, Mikhail G.
and
Mormann, Thomas
2013.
Tools, Objects, and Chimeras: Connes on the Role of Hyperreals in Mathematics.
Foundations of Science,
Vol. 18,
Issue. 2,
p.
259.
Hamkins, Joel David
and
Löwe, Benedikt
2013.
Logic and Its Applications.
Vol. 7750,
Issue. ,
p.
139.
Arrigoni, Tatiana
and
Friedman, Sy-David
2013.
The hyperuniverse program.
The Bulletin of Symbolic Logic,
Vol. 19,
Issue. 1,
p.
77.
Venturi, Giorgio
2014.
Foundation of Mathematics between Theory and Practice.
Philosophia Scientae,
p.
45.
Meadows, Toby
2015.
Naive Infinitism: The Case for an Inconsistency Approach to Infinite Collections.
Notre Dame Journal of Formal Logic,
Vol. 56,
Issue. 1,
Hamkins, Joel David
2015.
Is the Dream Solution of the Continuum Hypothesis Attainable?.
Notre Dame Journal of Formal Logic,
Vol. 56,
Issue. 1,
Antos, Carolin
Friedman, Sy-David
Honzik, Radek
and
Ternullo, Claudio
2015.
Multiverse conceptions in set theory.
Synthese,
Vol. 192,
Issue. 8,
p.
2463.
Incurvati, Luca
2016.
Maximality Principles in Set Theory.
Philosophia Mathematica,
p.
nkw011.
Venturi, Giorgio
2016.
Objectivity, Realism, and Proof.
Vol. 318,
Issue. ,
p.
211.
Button, Tim
and
Walsh, Sean
2016.
Structure and Categoricity: Determinacy of Reference and Truth Value in the Philosophy of Mathematics.
Philosophia Mathematica,
Vol. 24,
Issue. 3,
p.
283.
Barton, Neil
2016.
Richness and Reflection.
Philosophia Mathematica,
Vol. 24,
Issue. 3,
p.
330.
Clarke-Doane, Justin
2016.
Truth, Objects, Infinity.
Vol. 28,
Issue. ,
p.
17.
Barton, Neil
2016.
Objectivity, Realism, and Proof.
Vol. 318,
Issue. ,
p.
189.
GRIFFITHS, OWEN
and
PASEAU, A.C.
2016.
ISOMORPHISM INVARIANCE AND OVERGENERATION.
The Bulletin of Symbolic Logic,
Vol. 22,
Issue. 4,
p.
482.
Clarke-Doane, Justin
2017.
Objectivity and reliability.
Canadian Journal of Philosophy,
Vol. 47,
Issue. 6,
p.
841.
Reitz, Jonas
2017.
From Geometry to Geology: An Invitation to Mathematical Pluralism Through the Phenomenon of Independence.
Journal of Indian Council of Philosophical Research,
Vol. 34,
Issue. 2,
p.
289.
Koellner, Peter
2017.
Feferman on Foundations.
Vol. 13,
Issue. ,
p.
491.
Halimi, Brice
2017.
Models as Universes.
Notre Dame Journal of Formal Logic,
Vol. 58,
Issue. 1,
Barton, Neil
2017.
Independence and Ignorance: How Agnotology Informs Set-Theoretic Pluralism.
Journal of Indian Council of Philosophical Research,
Vol. 34,
Issue. 2,
p.
399.