Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-26T21:52:00.275Z Has data issue: false hasContentIssue false

ON THE SYNTAX OF LOGIC AND SET THEORY

Published online by Cambridge University Press:  15 September 2010

LUCIUS T. SCHOENBAUM*
Affiliation:
Louisiana State University
*
*DEPARTMENT OF MATHEMATICS, LOUISIANA STATE UNIVERSITY, BATON ROUGE, LA 70803. E-mail: lschoe2@lsu.edu, URL: http://www.math.lsu.edu/∼lschoe2

Abstract

We introduce an extension of the propositional calculus to include abstracts of predicates and quantifiers, employing a single rule along with a novel comprehension schema and a principle of extensionality, which are substituted for the Bernays postulates for quantifiers and the comprehension schemata of ZF and other set theories. We prove that it is consistent in any finite Boolean subset lattice. We investigate the antinomies of Russell, Cantor, Burali-Forti, and others, and discuss the relationship of the system to other set-theoretic systems ZF, NBG, and NF. We discuss two methods of axiomatizing higher order quantification and abstraction, and then very briefly discuss the application of one of these methods to areas of mathematics outside of logic.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

BIBLIOGRAPHY

Bell, J. (1988). Toposes and Local Set Theories: An Interpretation. Oxford: Clarendon.Google Scholar
Bernays, P. (1958). Axiomatic Set Theory. Amsterdam, The Netherlands: North-Holland.Google Scholar
Beth, E. W. (1965). The Foundations of Mathematics (second edition). Amsterdam, The Netherlands: North-Holland.Google Scholar
Birkhoff, G. (1940). Lattice Theory (third edition). Providence, RI: American Mathematical Society.Google Scholar
Brouwer, L. E. J. (1923). Über die Bedeutung des Satzes vom ausgeschlossenen Dritten in der Mathematik, insbesondere in der Funktionentheorie. Journal fur die reine und angewandte Mathematik, 154, 1–7. English translation in van Heijenoort (1967, pp. 334–341).Google Scholar
Frege, G. (1879). Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen Denkens. Halle, Germany: Louis Nebert. English translation in van Heijenoort (1967, pp. 1–82).Google Scholar
Gauss, K. F. (1986). Disquisitiones Arithmeticae. New Haven: Yale University Press. English translation by A. Clarke, W. Waterhouse. Originally published in 1801.CrossRefGoogle Scholar
Gödel, K. (1944). Russell’s mathematical logic. In Schilpp, P., editor. The Philosophy of Bertrand Russell. Chicago: Northwestern University Press, pp. 125–53.Google Scholar
Heyting, A. (1930). Die formalen Regeln der intuitionistischen Logik. Sigzungsberichte der Preussischen Akademie der Wissenschaften, 16, 42–56. English translation in Mancosu (1998, pp. 311–327).Google Scholar
Hilbert, D. (1927). Die Grundlagen der Mathematik. Abhandlungen aus dem mathematischen Seminar der Hamburgischen Universität, 6, 65–85. English translation in van Heijenoort (1967, pp. 464–479).CrossRefGoogle Scholar
Hilbert, D., & Ackermann, W. (1928). Grundzüge der theoretischen Logik (second edition). Berlin, Germany: Springer.Google Scholar
Hungerford, T. W. (1974). Algebra. New York: Springer.Google Scholar
Kleene, S. C. (1952). Introduction to Metamathematics. Amsterdam, The Netherlands: North-Holland.Google Scholar
Kunen, K. (1980). Set Theory: An Introduction to Independence Proofs. Amsterdam, The Netherlands: Elsevier B.V.Google Scholar
Mancosu, P. (1998). From Brouwer to Hilbert: The Debate on the Foundations of Mathematics in the 1920s. New York: Oxford University Press.Google Scholar
Peano, G. (1889). Arithmetices principia, nova methodo exposita. Turin, Italy: Bocca. English translation in van Heijenoort (1967, pp. 83–97).Google Scholar
Prawitz, D. (1965). Natural Deduction: A Proof-Theoretical Study. Stockholm, Sweden: Almqvist & Wiksell.Google Scholar
Pudlák, P. (1998). The lengths of proofs. In Buss, S., editor. Handbook of Proof Theory, Chapter 8. Amsterdam: Elsevier Science B.V., pp. 547–637.CrossRefGoogle Scholar
Quine, W. V. O. (1937). Logic based on inclusion and abstraction. Journal of Symbolic Logic, 2(4), 145–152.CrossRefGoogle Scholar
Quine, W. V. O. (1938). On the theory of types. Journal of Symbolic Logic, 3(4), 125–139.CrossRefGoogle Scholar
Quine, W. V. O. (1941). Element and number. Journal of Symbolic Logic, 6(4), 135–149.CrossRefGoogle Scholar
Quine, W. V. O. (1951). Mathematical Logic (revised edition). Cambridge, UK: Harvard University Press.CrossRefGoogle Scholar
Rudin, W. (1987). Real and Complex Analysis (third edition). Boston: WCB/McGraw-Hill.Google Scholar
Simmons, H. (2000). Derivation and Computation. Cambridge, UK: Cambridge University Press.Google Scholar
Suppes, P. (1960). Axiomatic Set Theory. New York: D. Van Nostrand Company.Google Scholar
van Heijenoort, J., editor. (1967). From Frege to Gödel: A Source Book in Mathematical Logic. Cambridge, Mass.: Harvard University Press.Google Scholar
Zermelo, E. (1908). Untersuchungen über die Grundlagen der Mengenlehre I. Mathematische Annalen, 59, 261–281. English translation in van Heijenoort (1967, pp. 199–215).CrossRefGoogle Scholar