Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-11T00:39:49.083Z Has data issue: false hasContentIssue false

AN ALGEBRAIC PROOF OF COMPLETENESS FOR MONADIC FUZZY PREDICATE LOGIC $\mathbf {MMTL}\boldsymbol {\forall }$

Published online by Cambridge University Press:  18 October 2023

JUNTAO WANG
Affiliation:
SCHOOL OF SCIENCE XI’AN SHIYOU UNIVERSITY XI’AN, SHAANXI 710065 CHINA E-mail: wjt@xsyu.edu.cn
HONGWEI WU
Affiliation:
SCHOOL OF SCIENCE XI’AN SHIYOU UNIVERSITY XI’AN, SHAANXI 710065 CHINA E-mail: wuhw@snnu.edu.cn
PENGFEI HE
Affiliation:
SCHOOL OF MATHEMATICS AND STATISTICS SHAANXI NORMAL UNIVERSITY XI’AN, SHAANXI 710119 CHINA E-mail: hepengf1986@126.com
YANHONG SHE*
Affiliation:
SCHOOL OF SCIENCE XI’AN SHIYOU UNIVERSITY XI’AN, SHAANXI 710065 CHINA

Abstract

Monoidal t-norm based logic $\mathbf {MTL}$ is the weakest t-norm based residuated fuzzy logic, which is a $[0,1]$-valued propositional logical system having a t-norm and its residuum as truth function for conjunction and implication. Monadic fuzzy predicate logic $\mathbf {mMTL\forall }$ that consists of the formulas with unary predicates and just one object variable, is the monadic fragment of fuzzy predicate logic $\mathbf {MTL\forall }$, which is indeed the predicate version of monoidal t-norm based logic $\mathbf {MTL}$. The main aim of this paper is to give an algebraic proof of the completeness theorem for monadic fuzzy predicate logic $\mathbf {mMTL\forall }$ and some of its axiomatic extensions. Firstly, we survey the axiomatic system of monadic algebras for t-norm based residuated fuzzy logic and amend some of them, thus showing that the relationships for these monadic algebras completely inherit those for corresponding algebras. Subsequently, using the equivalence between monadic fuzzy predicate logic $\mathbf {mMTL\forall }$ and S5-like fuzzy modal logic $\mathbf {S5(MTL)}$, we prove that the variety of monadic MTL-algebras is actually the equivalent algebraic semantics of the logic $\mathbf {mMTL\forall }$, giving an algebraic proof of the completeness theorem for this logic via functional monadic MTL-algebras. Finally, we further obtain the completeness theorem of some axiomatic extensions for the logic $\mathbf {mMTL\forall }$, and thus give a major application, namely, proving the strong completeness theorem for monadic fuzzy predicate logic based on involutive monoidal t-norm logic $\mathbf {mIMTL\forall }$ via functional representation of finitely subdirectly irreducible monadic IMTL-algebras.

MSC classification

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of The Association for Symbolic Logic

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Blok, W. J., & Pigozzi, D. (1989). Algebraizable logics. Memoirs of the American Mathematical Society, Vol. 77(396). Providence: American Mathematical Society.Google Scholar
Borzooei, R. A., Shoar, S. K., & Ameri, R. (2012). Some types of filters in MTL-algebras. Fuzzy Sets and Systems, 187, 92102.CrossRefGoogle Scholar
Burris, S., & Sankappanavar, M. P. (1981). A Course in Universal Algebra. New York: Springer.CrossRefGoogle Scholar
Castaño, D., Cimadamore, C., Verela, J. P. D., & Rueda, L. (2017). Monadic BL-algebras: The equivalent algebraic semantics of Hájek’s monadic fuzzy logic. Fuzzy Sets and Systems, 320, 4059.CrossRefGoogle Scholar
Chang, C. C. (1958). Algebraic analysis of many-valued logics. Transactions of the American Mathematical Society, 88, 467490.CrossRefGoogle Scholar
Chang, C. C., & Keisler, H. J. (1990). Model Theory. Amsterdam: Elsevier.Google Scholar
Cignoli, R., & Esteva, F. (2009). Commutative integral bounded residuated lattices with an added involution. Annals of Pure and Applied Logic, 161, 150160.CrossRefGoogle Scholar
Cignoli, R., Esteva, F., Godo, L., & Torrens, A. (2000). Basic fuzzy logic is the logic of continuous t-norms and their residua. Soft Computing, 4, 106112.CrossRefGoogle Scholar
Cintula, P., Horčík, R., & Noguera, C. (2013). Non-associative substructural logics and their semilinear extensions: A xiomatization and completeness properties. The Review of Symbolic Logic, 6, 394423.CrossRefGoogle Scholar
Cintula, P., & Noguera, C. (2015). A Henkin-style proof of completeness for first-order algebraizable logics. The Journal of Symbolic Logic, 80, 341358.CrossRefGoogle Scholar
Di Nola, A., & Grigolia, R. (2004). On monadic MV-algebras. Annals of Pure and Applied Logic, 128, 125139.CrossRefGoogle Scholar
Di Nola, A., Grigolia, R., & Lenzi, G. (2019). Topological spaces of monadic MV- algebras. Soft Computing, 23, 375381.CrossRefGoogle Scholar
Drŭgulici, D. D. (2001). Quantifiers on BL-algebras. Analele Universitatill Bucuret Mathematica Informatica, 50, 2942.Google Scholar
Dzik, W., & Wojtylak, P. (2019). Unification in superintuitionistic predicate logics and its applications. The Review of Symbolic Logic, 12, 3761.CrossRefGoogle Scholar
Esteva, F., Gispert, J., Godo, L., & Montagan, F. (2002). On the standard and rational completeness of some axiomatic extensions of monoidal t-norm based logic. Studia Logica, 71, 199226.CrossRefGoogle Scholar
Esteva, F., & Godo, L. (2001). Monoidal t-norm based logic: Towards a logic for left-continuous t-norms. Fuzzy Sets and Systems, 124, 271288.CrossRefGoogle Scholar
Esteva, F., & Godo, L. (2007). Towards the generalization of Mundici’s Γ functor to IMTL-algebras: The linearly ordered case. In Algebraic and Proof-Theoretic Aspects of Non-Classical Logics: Papers in Honor of Daniele Mundici on the Occasion of his 60th Birthday. Berlin–Heidelberg: Springer, pp. 127137.CrossRefGoogle Scholar
Esteva, F., Godo, L., & Noguera, C. (2009). First-order t-norm based fuzzy logics with truth-constants: Distinguished semantics and completeness properties. Annals of Pure and Applied Logic, 161, 185202.CrossRefGoogle Scholar
Figallo Orellano, A. (2017). A topological duality for monadic MV-algebras. Soft Computing, 21, 71197123.CrossRefGoogle Scholar
Ghorbani, S. (2018). Logic for abstract hoop twist-structures. Annals of Pure and Applied Logic, 169, 981996.CrossRefGoogle Scholar
Ghorbani, S. (2019). Monadic pseudo equality algebras. Soft Computing, 23, 14991510.CrossRefGoogle Scholar
Gil-Férez, J., Jipsen, P., & Metcalfe, G. (2020). Structure theorems for idempotent residuated lattices. Algebra U niversalis, 28, 125.Google Scholar
Gottwal, S., García-Cerdaña, A., & Bou, F. (2003). Axiomatizing monoidal logic — a correction. Journal of Multiple-Valued Logic and Soft Computing, 9, 427433.Google Scholar
Gottwal, S., & Jenei, S. (2001). On a new axiomatization for involutive monoidal t-norm based logic. Fuzzy Sets and Systems, 124, 303308.CrossRefGoogle Scholar
Grigolia, R. (2006). Monadic BL-algebras. Georgian Mathematical Journal, 13, 267276.CrossRefGoogle Scholar
Hájek, P. (1998). Metamathematics of Fuzzy Logic. Dordrecht: Kluwer Academic.CrossRefGoogle Scholar
Hájek, P. (2002). Observations on the monoidal t-norm logic. Fuzzy Sets and Systems. 132, 107112.CrossRefGoogle Scholar
Hájek, P. (2002). Monadic fuzzy predicate logic. Studia Logica, 71, 165175.CrossRefGoogle Scholar
Hájek, P. (2009). Arithmetical complexity of fuzzy predicate logics—a survey II. Annals of Pure and Applied Logic, 161, 212219.CrossRefGoogle Scholar
Hájek, P. (2010). On fuzzy modal logics S5(C). Fuzzy Sets and Systems, 161, 23892396.CrossRefGoogle Scholar
Hájek, P., Paris, J., & Shepherdson, J. (2000). Rational Pavelka predicate logic is a conservative extension of Łukasiewicz predicate logic. The Journal of Symbolic Logic, 65, 669682.CrossRefGoogle Scholar
Halmos, R. P. (1955). Algebraic logic, I. Monadic Boolean algebras. Composition Mathematica, 12, 217249.Google Scholar
Jenei, S., & Montagan, F. (2002). A proof of standard completeness for Esteva and Godo’s logic. Studia Logica, 70, 183192.CrossRefGoogle Scholar
Kurahashi, T. (2013). Arithmetical interpretations and K ripke frames of predicate modal logic of provability. The Review of Symbolic Logic, 6, 129146.CrossRefGoogle Scholar
Metcalfe, G., & Montagna, F. (2007). Substructural fuzzy logics. The Journal of Symbolic Logic, 72, 834864.CrossRefGoogle Scholar
Montagna, F., & Ono, H. (2002). Kripke semantics, undecidability and standard completeness for Esteva and Godo’s logic MTL∀. Studia Logica, 71, 227245.CrossRefGoogle Scholar
Noguera, C. (2006). Algebraic study of axiomatic extensions of triangular norm based fuzzy logics. PhD Thesis, IIIA-CSIC.Google Scholar
Olkhovikov, G. K., & Badia, G. (2023). Craig interpolation theorem fails in bi-intuitionistic predicate logic. The Review of Symbolic Logic, 123. https://doi.org/10.1017/S1755020322000296 Google Scholar
Pei, D. W. (2003). On equivalent forms of fuzzy logic systems NM and IMTL. Fuzzy Sets and Systems, 138, 187195.CrossRefGoogle Scholar
Pierce, K. R. (1972). Amalgamations of lattice ordered groups. Transactions of the American Mathematical Society, 172, 249260.CrossRefGoogle Scholar
Poacik, T. (1998). Propositional quantification in the monadic fragment of intuitionistic logic. The Journal of Symbolic Logic, 63, 269300.CrossRefGoogle Scholar
Rach ů nek, J., & Šalounová, D. (2008). Monadic GMV-algebras. Archive for Mathematical Logic, 47, 277297.CrossRefGoogle Scholar
Rach ů nek, J., & Šalounová, D. (2013). Monadic bounded residuated lattices. Order, 30, 195210.CrossRefGoogle Scholar
Rach ů nek, J., & Švrček, F. (2008). Monadic bounded residuated ℓ-monoids. Order, 25, 157175.CrossRefGoogle Scholar
Rutledge, J. D. (1959). A preliminary investigation of the infinitely many-valued predicate calculus. PhD Thesis, Cornell University.Google Scholar
Tharp, L. H. (1983). The characterization of monadic logic. The Journal of Symbolic Logic, 38, 481488.CrossRefGoogle Scholar
Torsun, I. S. (1995). Foundations of Intelligent Knowledge-Based Systems. London: Academic Press.Google Scholar
Wang, J. T., He, P. F., & She, Y. H. (2019). Monadic NM-algebras. Logic Journal of the IGPL, 27, 812835.CrossRefGoogle Scholar
Wang, J. T., He, P. F., Yang, J., Wang, M., & He, X. L. (2022). Monadic NM-algebras: A n algebraic approach to monadic predicate nilpotent minimum logic. Journal of Logic and Computation, 32, 741766.CrossRefGoogle Scholar
Wang, J. T., He, X. L., & Wang, M. (2022). An algebraic study of the logic S5’(BL). Mathematica Slovaca, 72, 14471462.CrossRefGoogle Scholar
Wang, J. T., She, Y. H., He, P. F., & Ma, N. N. (2023). On categorical equivalence of weak monadic residuated distributive lattices and weak monadic c-differential residuated distributive lattices. Studia Logica, 111, 361390.CrossRefGoogle Scholar
Wang, J. T., Wang, M., & She, Y. H. (2023). Algebraic semantics of similarity in monadic substructural predicate logics. Acta Electronica Sinica, 51, 956964.Google Scholar
Wang, J. T., & Xin, X. L. (2022). Monadic algebras of an involutive monoidal t-norm based logic. Iranian Journal of Fuzzy Systems, 19, 187202.Google Scholar
Wang, J. T., Xin, X. L., & He, P. F. (2018). Monadic bounded hoops. Soft Computing, 22, 17491762.CrossRefGoogle Scholar
Ward, M., & Dilworth, R. P. (1938). Residuated lattices. Proceedings of the National Academy of Sciences, 24, 162164.CrossRefGoogle ScholarPubMed
Zadeh, L. A. (2015). Fuzzy logic—a personal perspective. Fuzzy Sets and Systems, 281, 420.CrossRefGoogle Scholar
Zahiri, S., & Borumand Saeid, A. (2022). A new model of fuzzy logic: Monadic monoidal t-norm based logic. Research Square. https://doi.org/10.21203/rs.3.rs-948685/v1 Google Scholar
Zhang, J. L. (2011). Topological properties of prime filters in MTL-algebras and fuzzy set representations for MTL-algebras. Fuzzy Sets and Systems, 178, 3853.CrossRefGoogle Scholar