Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-12T00:37:22.685Z Has data issue: false hasContentIssue false

PROBABILISTIC ENTAILMENT ON FIRST ORDER LANGUAGES AND REASONING WITH INCONSISTENCIES

Published online by Cambridge University Press:  07 July 2022

SOROUSH RAFIEE RAD*
Affiliation:
DUTCH INSTITUTE FOR EMERGENT PHENOMENA (DIEP) UNIVERSITY OF AMSTERDAM, AMSTERDAM, THE NETHERLANDS and THE INSTITUTE FOR LOGIC LANGUAGE AND COMPUTATION (ILLC), AMSTERDAM, THE NETHERLANDS

Abstract

We investigate an approach for drawing logical inference from inconsistent premisses. The main idea in this approach is that the inconsistencies in the premisses should be interpreted as uncertainty of the information. We propose a mechanism, based on Kinght’s [14] study of inconsistency, for revising an inconsistent set of premisses to a minimally uncertain, probabilistically consistent one. We will then generalise the probabilistic entailment relation introduced in [15] for propositional languages to the first order case to draw logical inference from a probabilistic set of premisses. We will show how this combination can allow us to limit the effect of uncertainty introduced by inconsistent premisses to only the reasoning on the part of the premise set that is relevant to the inconsistency.

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of The Association for Symbolic Logic

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

BIBLIOGRAPHY

Alchourròn, C. E., Gadenfors, P., & Makinson, D. (1985). On the logic of theory change: Partial meet contraction and revision functions. Journal of Symbolic Logic , 50, 510530.CrossRefGoogle Scholar
Anderson, A. R., & Belnap, N. (1975). Entailment: The Logic of Relevance and Necessity, Vol. 1. Princeton: Princeton University Press.Google Scholar
Batens, D. (2001). A general characterization of adaptive logics. Logique et Analyse , 44(173–175), 4568.Google Scholar
Belnap, N. D. (1992). A useful four-valued logic: How a computer should think. In Anderson, A. R., Belnap, N. D. Jr., and Dunn, J. M., editors. Entailment: The Logic of Relevance and Necessity, Vol. II. Princeton: Princeton University Press.Google Scholar
Bovens, L., & Hartmann, S. (2003). Bayesian Epistemology. Oxford: Oxford University Press.Google Scholar
da Costa, N. C. A. (1974). On the theory of inconsistent formal systems. Notre Dame Journal of Formal Logic , 15(4), 497510.CrossRefGoogle Scholar
da Costa, N. C. A., & Subrahmanian, V. S. (1989). Paraconsistent logic as a formalism for reasoning about inconsistent knowledge bases. Artificial Intelligence in Medicine , 1, 167174.CrossRefGoogle Scholar
De Bona, G., & Finger, M. (2015). Measuring inconsistency in probabilistic logic: Rationality postulates and Dutch book interpretation. Artificial Intelligence , 227, 140164.CrossRefGoogle Scholar
De Bona, G., Finger, M., Ribeiro, M., Santos, Y., & Wassermann, R. (2016). Consolidating probabilistic knowledge bases via belief contraction. In Proceeding of International Conference on the Principles of Knowledge Representation and Reasoning KR2016. Palo Alto: AAAI Press.Google Scholar
Dunn, J. M. (1976). Intuitive semantics for first degree entailment and “coupled trees”. Philosophical Studies , 29(3), 149168.CrossRefGoogle Scholar
Gaifman, H. (1964). Concerning measures in first order calculi. Israel Journal of Mathematics , 2(1), 118.CrossRefGoogle Scholar
Hansson, A. (1999). Survey of non-prioritized belief revision. Erkenntnis , 50(2–3), 413427.CrossRefGoogle Scholar
Jaśkowski, S. (1948 [1969]). Propositional calculus for contradictory deductive systems. Studia Logica , 24, 143157.CrossRefGoogle Scholar
Knight, K. M. (2002). Measuring inconsistency. Journal of Philosophical Logic , 31(1), 7798.CrossRefGoogle Scholar
Knight, K. M. (2003). Probabilistic entailment and a non-probabilistic logic. Logic Journal of the IGPL , 11(3), 353365.CrossRefGoogle Scholar
Leitgeb, H. (2014). The stability theory of belief. The Philosophical Review , 23(2), 131171.CrossRefGoogle Scholar
Paris, J. B. (1994). The Uncertain Reasoners’ Companion: A Mathematical Perspective, Cambridge Tracts in Theoretical Computer Science, Vol. 39. Cambridge: Cambridge University Press.Google Scholar
Paris, J. B. (2004). Deriving information from inconsistent knowledge bases: A completeness theorem. Logic Journal of the IGPL , 12, 345353.CrossRefGoogle Scholar
Paris, J. B., Picado-Muino, D., & Rosefield, M. (2009). Inconsistency as qualified truth: A probability logic approach. International Journal of Approximate Reasoning , 50, 11511163.CrossRefGoogle Scholar
Picado Muiño, D. (2011). Measuring and repairing inconsistency in probabilistic knowledge bases. International Journal of Approximate Reasoning , 52, 828840.CrossRefGoogle Scholar
Potyka, N., & Thimm, M. (2017). Inconsistency-tolerant reasoning over linear probabilistic knowledge bases. International Journal of Approximate Reasoning , 88, 209236.CrossRefGoogle Scholar
Priest, G. (1979). Logic of paradox. Journal of Philosophical Logic , 8, 219241.CrossRefGoogle Scholar
Priest, G. (1987). In Contradiction. Nijhoff International Philosophy Series. Dordrecht: Springer.CrossRefGoogle Scholar
Priest, G. (2002). Paraconsistent logic. In Gabbay, D. M. and Guenthner, F., editors. Handbook of Philosophical Logic, Vol. 6, pp. 287393. Dordrecht: Springer.CrossRefGoogle Scholar
Priest, G. (2007). Paraconsistency and dialetheism. In Gabbay, D. and Woods, J., editors. Handbook of the History of Logic, Vol. 8, pp. 129204.Google Scholar
Rescher, N., & Manor, R. (1970). On inference from inconsistent premisses. Theory and Decision , 1(2), 179217.CrossRefGoogle Scholar
Thimm, M. (2009). Measuring inconsistency in probabilistic knowledge bases. In Bilmes, J. and Ng, A., editors, Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence (UAI’09), pp. 530537. Arlington: AUAI Press.Google Scholar
Thimm, M. (2013). Inconsistency measures for probabilistic logic. Artificial Intelligence , 197, 124.CrossRefGoogle Scholar
Williamson, J. (2015). Deliberation, judgement and the nature of evidence. Economics and Philosophy , 31, 2765.CrossRefGoogle Scholar