Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-25T22:10:35.720Z Has data issue: false hasContentIssue false

CATEGORICAL FOUNDATIONS OF MATHEMATICS OR HOW TO PROVIDE FOUNDATIONS FOR ABSTRACT MATHEMATICS

Published online by Cambridge University Press:  15 June 2012

JEAN-PIERRE MARQUIS*
Affiliation:
Département de philosophie, Université de Montréal
*
*DÉPARTEMENT DE PHILOSOPHIE and CIRST, UNIVERSITÉ DE MONTRÉAL, H3C 3J7 MONTRÉAL, QC, CANADA E-mail: jean-pierre.marquis@umontreal.ca

Abstract

Feferman’s argument presented in 1977 seemed to block any possibility for category theory to become a serious contender in the foundational game. According to Feferman, two obstacles stand in the way: one logical and the other psychological. We address both obstacles in this paper, arguing that although Feferman’s argument is indeed convincing in a certain context, it can be dissolved entirely by modifying the context appropriately.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

BIBLIOGRAPHY

Awodey, S. (2008). A brief introduction to algebraic set theory. Bulletin of Symbolic Logic, 14, 281298.Google Scholar
Awodey, S. (2012). Type theory and homotopy. In Dybjer, P., et al. ., editors. Epistemology versus Ontology: Essays on the Philosophy and Foundations of Mathematics in Honour of Per Martin-Löf. New York, NY: Springer. To appear.Google Scholar
Awodey, S., Butz, C., Simpson, A., & Streicher, T. (2007). Relating first-order set theories and elementary toposes. Bulletin of Symbolic Logic, 13, 340358.Google Scholar
Awodey, S., & Warren, M. A. (2009). Homotopy theoretic models of identity types. Mathematical Proceedings of the Cambridge Philosophical Society, 146, 4555.CrossRefGoogle Scholar
Baez, J. C., & Dolan, J. (1998). Higher-dimensional algebra. III. n-categories and the algebra of opetopes. Advances in Mathematics, 135, 145206.Google Scholar
Boileau, A., & Joyal, A. (1981). La logique des topos. Journal of Symbolic Logic, 46, 616.Google Scholar
Corry, L. (1996). Modern Algebra and the Rise of Mathematical Structures, Vol. 17 of Science Networks. Historical Studies. Basel, Switzerland: Birkhäuser Verlag.Google Scholar
Curtis, C. E. (1999). Pioneers of Representation Theory: Frobenius, Burnside, Schur, and Brauer, Vol. 15 of Histcory of Mathematics. Providence, RI: American Mathematical Society.CrossRefGoogle Scholar
Dehaene, S. (2011). The Number Sense: How the Mind Creates Mathematics. New York: Oxford University Press, rev. and updated edition.Google Scholar
Dehaene, S., & Brannon, E. M. editors. (2011). Space, Time and Number in the Brain: Searching for the Foundations of Mathematical Thought (first edition). London: Elsevier.Google Scholar
Feferman, S. (1977). Categorical foundations and foundations of category theory. In Logic, Foundations of Mathematics and Computability Theory (Proc. Fifth Internat. Congr. Logic, Methodology and Philos. of Sci., Univ. Western Ontario, London, Ont., 1975), Part I, Vol. 9. Univ. Western Ontario Ser. Philos. Sci. Dordrecht, The Netherlands: Reidel, pp. 149169.Google Scholar
Feigenson, L. (2011). Objects, sets, and ensembles. In Dehaene, S., and Brannon, E. M., editors. Space, Time and Number in the Brain: Searching for the Foundations of Mathematical Thought, chapter 2. London: Elsevier, pp. 1322.Google Scholar
Ferreirós, J. (2001). The road to modern logic—an interpretation. Bulletin of Symbolic Logic, 7, 441484.CrossRefGoogle Scholar
Fourman, M. P. (1977). The logic of topoi. In Barwise, J., editor. Handbook of Mathematical Logic, Vol. 90 of Studies in Logic and the Foundations of Mathematics. Amsterdam: Elsevier, pp. 10531090.Google Scholar
Fourman, M. P., & Scott, D. S. (1979). Sheaves and logic. In Applications of Sheaves (Proc. Res. Sympos. Appl. Sheaf Theory to Logic, Algebra and Anal., Univ. Durham, Durham, 1977), Vol. 753 of Lecture Notes in Math.. Berlin, Germany: Springer, pp. 302401.Google Scholar
Fréchet, M. (1951). Abstract sets, abstract spaces and general analysis. Mathematics Magazine, 24, 147155.CrossRefGoogle Scholar
Goel, V. (2007). Anatomy of deductive reasoning. Trends in Cognitive Sciences, 11, 435441.CrossRefGoogle ScholarPubMed
Hellman, G., & Bell, J. L. (2006). Pluralism and the foundations of mathematics. In Kellert, S. H., Longino, H. E., and Waters, C. K. editors. Scientific Pluralism, Minnesota studies in the philosophy of science. Minneapolis, MN: University of Minnesota Press, pp. 6479.Google Scholar
Hermida, C., Makkai, M., & Power, J. (2000). On weak higher dimensional categories. I. 1. Journal of Pure and Applied Algebra, 154, 221246.Google Scholar
Hermida, C., Makkai, M., & Power, J. (2001). On weak higher-dimensional categories. I.2. Journal of Pure and Applied Algebra, 157, 247277.Google Scholar
Hermida, C., Makkai, M., & Power, J. (2002). On weak higher-dimensional categories. I. 3. Journal of Pure and Applied Algebra, 166, 83104.Google Scholar
Houdé, O., & Tzourio-Mazoyer, N. (2003). Neural foundations of logical and mathematical cognition. Nature Reviews Neuroscience, 4, 507514.Google Scholar
Izard, V., Pica, P., Dehaene, S., Hinchey, D., & Spelke, E. (2011). Geometry as a universal mental construction. In Dehaene, S., and Brannon, E. M., editors. Space, Time and Number in the Brain: Searching for the Foundations of Mathematical Thought: An Attention and Performance Series Volume. Amsterdam: Elsevier, pp. 319332.Google Scholar
Johnstone, P. T. (2002). Sketches of an Elephant: A Topos Theory Compendium. Vol. 1, Vol. 43 of Oxford Logic Guides. New York: The Clarendon Press Oxford University Press.Google Scholar
Joyal, A., & Moerdijk, I. (1995). Algebraic Set Theory, Vol. 220 of London Mathematical Society Lecture Note Series. Cambridge, UK: Cambridge University Press.Google Scholar
Krömer, R. (2007). Tool and Object: A History and Philosophy of Category Theory, Vol. 32 of Science Networks. Historical Studies. Basel, Switzerland: Birkhäuser Verlag.Google Scholar
Lambek, J., & Scott, P. J. (1986). Introduction to Higher Order Categorical Logic, Vol. 7. Cambridge, UK: Cambridge University Press.Google Scholar
Landry, E., & Marquis, J.-P. (2005). Categories in context: Historical, foundational, and philosophical. Philosophy of Mathematics, 12, 143.Google Scholar
Lawvere, F. W. (1964). An elementary theory of the category of sets. Proceedings of the National Academy of Sciences of the United States of America, 52, 15061511.Google Scholar
Lawvere, F. W. (1976). Variable quantities and variable structures in topoi. In Algebra, Topology, and Category Theory (A Collection of Papers in Honor of Samuel Eilenberg). New York: Academic Press, pp. 101131.Google Scholar
Lawvere, F. W. (2005). An elementary theory of the category of sets (long version) with commentary. Reprints in Theory and Applications of Categories, 11, 135. Reprinted and expanded from Proc. Nat. Acad. Sci. U.S.A. 52 (1964) [MR0172807], With comments by the author and Colin McLarty.Google Scholar
Leinster, T. (2002). A survey of definitions of n-category. Theory and Applications of Categories, 10, 170.Google Scholar
Macnamara, J., & Reyes, G. E. (1994). The Logical Foundations of Cognition, Vol. 4. New York: Oxford University Press.Google Scholar
Makkai, M. (1998). Towards a categorical foundation of mathematics. In Logic Colloquium ’95 (Haifa), Vol. 11 of Lecture Notes Logic. Berlin, Germany: Springer, pp. 153190.Google Scholar
Makkai, M. (1999). On structuralism in mathematics. In Language, Logic, and Concepts, Bradford Book. Cambridge, MA: MIT Press, pp. 4366.CrossRefGoogle Scholar
Makkai, M., & Reyes, G. E. (1977). First Order Categorical Logic. Lecture Notes in Mathematics, Vol. 611. Berlin, Germany: Springer-Verlag. Model-theoretical methods in the theory of topoi and related categories.CrossRefGoogle Scholar
Makkai, M., & Zawadowski, M. (2001). Duality for simple ω-categories and disks. Theory and Applications of Categories, 8, 114243.Google Scholar
Marquis, J.-P. (1995). Category theory and the foundations of mathematics: Philosophical excavations. Synthese, 103, 421447.Google Scholar
Marquis, J.-P. (2009). From a Geometrical Point of View, Vol. 14 of Logic, Epistemology, and the Unity of Science. Dordrecht, The Netherlands: Springer. A study of the history and philosophy of category theory.Google Scholar
Marquis, J.-P. (2011). Mathematical forms and forms of mathematics: Leaving the shores of extensional mathematics. Synthese, 124. 10.1007/s11229-011-9962-0.Google Scholar
Marquis, J.-P., & Reyes, G. E. (2012). The history of categorical logic: 1963-1977. In Gabbay, D. M., Kanamori, A., and Woods, J., editors. Sets and Extensions in the Twentieth Century, Vol. 6 of Handbook of the History of Logic, chapter 10. Amsterdam: Elsevier, p. 689800.Google Scholar
Martin-Löf, P. (1984). Intuitionistic Type Theory, Vol. 1 of Studies in Proof Theory. Lecture Notes. Naples, France: Bibliopolis. Notes by Giovanni Sambin.Google Scholar
McLarty, C. (1992). Elementary Categories, Elementary Toposes, Vol. 21 of Oxford Logic Guides. New York: The Clarendon Press Oxford University Press. Oxford Science Publications.Google Scholar
Moore, G. H. (1987). A house divided against itself: The emergence of first-order logic as the basis for mathematics. In Studies in the History of Mathematics, Vol. 26 of MAA Stud. Math., Washington, DC: Math. Assoc. America, pp. 98136.Google Scholar
Moore, G. H. (1988). The emergence of first-order logic. In History and Philosophy of Modern Mathematics (Minneapolis, MN, 1985), Minnesota Stud. Philos. Sci., XI. Minneapolis, MN: Univ. Minnesota Press, pp. 95135.Google Scholar
Moore, G. H. (2007). The evolution of the concept of homeomorphism. Historia Mathematica, 34, 333343.Google Scholar
Nordström, B., Petersson, K., & Smith, J. M. (2000). Martin-Löf’s type theory. In Handbook of Logic in Computer Science, Vol. 5, Vol. 5 of Handb. Log. Comput. Sci. , New York: Oxford Univ. Press, pp. 137.Google Scholar
Scott, D. (1979). Identity and existence in intuitionistic logic. In Applications of Sheaves (Proc. Res. Sympos. Appl. Sheaf Theory to Logic, Algebra and Anal., Univ. Durham, Durham, 1977), Vol. 753 of Lecture Notes in Math. Berlin, Germany: Springer, pp. 660696.Google Scholar
Shulman, M. A. (2008). Set theory for category theory. 10.Google Scholar
Spaepen, E., Coppola, M., Spelke, E. S., Carey, S. E., & Goldin-Meadow, S. (2011). Number without a language model. Proceedings of the National Academy of Sciences of the United States of America, 108, 31633168.Google Scholar
van den Berg, B., & Moerdijk, I. (2009). A unified approach to algebraic set theory. In Logic Colloquium 2006, Vol. 32 of Lect. Notes Log.. Chicago, IL: Assoc. Symbol. Logic, pp. 1837.Google Scholar
Voevodsky, V. (2010). Univalent foundations project.Google Scholar
Wussing, H. (1984). The Genesis of the Abstract Group Concept. Cambridge, MA: MIT Press. A contribution to the history of the origin of abstract group theory, Translated from the German by Abe Shenitzer and Hardy Grant.Google Scholar