Hostname: page-component-7dd5485656-pnlb5 Total loading time: 0.001 Render date: 2025-10-30T19:35:59.374Z Has data issue: false hasContentIssue false

Short-run and long-run marginal costs of joint products inlinear programming

Published online by Cambridge University Press:  17 August 2016

Axel Pierru*
Affiliation:
Center for economics and management, IFP School, IFP, 228-232 Avenue Napoléon Bonaparte, 92852 Rueil-Malmaison, France
Get access

Summary

In standard microeconomic theory, short-run and long-run marginal costs areequal for production equipment with adjusted capacity. When the productionof joint products from interdependent equipment is modeled with a linearprogram, this equality is no longer verified. The short-run marginal costthen takes on a left-hand value and a right-hand value which generallydiffer from the long-run marginal cost. In this article, we demonstrate andinterpret the relationship existing between long-run marginal cost andshortrun marginal costs for a given finished product. That relationship issimply expressed as a function of marginal capacity adjustments (determinedin the long run) and marginal values of capacities (determined in the shortrun).

Résumé

Résumé

Dans la théorie microéconomique classique, coût marginal de court terme etcoût marginal de long terme sont égaux pour un équipement à capacitéadaptée. Lorsque l'on modélise par programmation linéaire la fabrication deproduits liés à partir d'équipements interdépendants, cette égalité n'estplus vérifiée. Le coût marginal de court terme prend alors deux valeurs (àgauche et à droite) généralement différentes du coût marginal de long terme.Dans cet article, nous démontrons et interprétons la relation existant alorsentre coût marginal de long terme et coûts marginaux de court terme d'unproduit donné. Celle-ci s'exprime simplement en fonction des ajustementsoptimaux des capacités (déterminés à long terme) et des valorisationsmarginales des capacités (déterminées à court terme).

Information

Type
Research Article
Copyright
Copyright © Université catholique de Louvain, Institut de recherches économiques et sociales 2007 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

*

The author is grateful to an anonymous referee and to Denis Babusiaux for helpful comments.

References

Anderson, D., (1972), Models for determining least-cost investments in electricity supply, Bell Journal of Economics and Management Science, 6, pp. 267299.Google Scholar
Aucamp, D.C. and Steinberg, D. I. (1982), The computation of shadow prices in linear programming, Journal of the Operational Research Society, 33, pp. 557565.Google Scholar
Boiteux, M., (1960), Peak-load pricing, The Journal of Business, 33, pp. 157179.Google Scholar
Gal, T., (1986), Shadow prices and sensitivity analysis in linear programming under degeneracy, OR Spektrum, 8, pp. 5971.Google Scholar
Greenberg, H. J., (1986), An analysis of degeneracy, Naval Research Logistics Quarterly, 33, pp. 635655.Google Scholar
Milgrom, P. and Segal, I. (2002), Envelope theorems for arbitrary choice sets, Econometrica, 70, pp. 583601.Google Scholar
Palmer, K.H., Boudwin, N.K. Patton, H.A. Rowland, A.J. Sammes, J.D. and Smith, D.M. (1984), A model-management framework for mathematical programming - An Exxon Monograph, New York, John Wiley & Sons.Google Scholar
Pierru, A. and Babusiaux, D. (2004), Breaking down a long-run marginal cost of an LP investment model into a marginal operating cost and a marginal equivalent investment cost, The Engineering Economist, 49, pp. 307326.Google Scholar