Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-26T00:28:00.527Z Has data issue: false hasContentIssue false

On the hardness of game equivalence under localisomorphism

Published online by Cambridge University Press:  05 November 2012

Joaquim Gabarró
Affiliation:
ALBCOM Research Group, Departament de Llenguatges i Sistemes Informàtics, Universitat Politècnica de Catalunya, Jordi Girona 1-3, Ω Building, 08034 Barcelona, Spain. . gabarro@lsi.upc.edu, agarcia@lsi.upc.edu, mjserna@lsi.upc.edu
Alina García
Affiliation:
ALBCOM Research Group, Departament de Llenguatges i Sistemes Informàtics, Universitat Politècnica de Catalunya, Jordi Girona 1-3, Ω Building, 08034 Barcelona, Spain. . gabarro@lsi.upc.edu, agarcia@lsi.upc.edu, mjserna@lsi.upc.edu
Maria Serna
Affiliation:
ALBCOM Research Group, Departament de Llenguatges i Sistemes Informàtics, Universitat Politècnica de Catalunya, Jordi Girona 1-3, Ω Building, 08034 Barcelona, Spain. . gabarro@lsi.upc.edu, agarcia@lsi.upc.edu, mjserna@lsi.upc.edu
Get access

Abstract

We introduce a type of isomorphism among strategic games that we call localisomorphism. Local isomorphisms is a weaker version of the notions of strongand weak game isomorphism introduced in [J. Gabarro, A. Garcia and M. Serna,Theor. Comput. Sci. 412 (2011) 6675–6695]. In a localisomorphism it is required to preserve, for any player, the player’s preferences on thesets of strategy profiles that differ only in the action selected by this player. We showthat the game isomorphism problem for local isomorphism is equivalent to the same problemfor strong or weak isomorphism for strategic games given in: general, extensive andformula general form. As a consequence of the results in [J. Gabarro, A. Garcia and M.Serna, Theor. Comput. Sci. 412 (2011) 6675–6695] thisimplies that local isomorphism problem for strategic games is equivalent to (a) thecircuit isomorphism problem for games given in general form, (b) the boolean formulaisomorphism problem for formula games in general form, and (c) the graph isomorphismproblem for games given in explicit form.

Type
Research Article
Copyright
© EDP Sciences 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agrawal, M. and Thierauf, T., The formula isomorphism problem. SIAM J. Comput. 30 (2000) 9901009. Google Scholar
Àlvarez, C., Gabarro, J. and Serna, M., Equilibria problems on games : Complexity versus succinctness. J. Comput. Syst. Sci. 77 (2011) 11721197. Google Scholar
Bergemann, D. and Morris, S., Robust implementation in general mechanisms. Games Econ. Behav. 71 (2011) 261281. Google Scholar
E. Bonzon, M.-C. Lagasquie-Schiex, J. Lang and B. Zanuttini, Boolean games revisited, in ECAI 2006, 17th European Conference on Artificial Intelligence (2006) 265–269.
Borchet, B., Ranjan, D. and Stephan, F., On the computational complexity of some classical equivalence relations on boolean functions. Theory Comput. Syst. 31 (1998) 679693. Google Scholar
Borm, P., A classification of 2 × 2 bimatrix games. Cahiers du C.E.R.O 29 (1987) 6984. Google Scholar
Gabarro, J., Garcia, A. and Serna, M., On the complexity of game isomorphism, in Mathematical Foundations of Computer Science 2007, 32nd International Symposium, MFCS 2007. Lect. Notes Comput. Sci. 4708 (2007) 559571. Google Scholar
Gabarro, J., Garcia, A. and Serna, M., The complexity of game isomorphism. Theor. Comput. Sci. 412 (2011) 66756695. Google Scholar
A. Garcia, The Complexity of Angel-Daemons and Game Isomorphism. Ph.D. thesis, Universitat Politècnica de Catalunya (Barcelona Tech) (2012).
Germano, F., On some geometry and equivalence classes of normal form games. Inter. J. Game Theory 4 (2006) 561581. Google Scholar
Kilgour, D. and Fraser, N., A taxonomy of all ordinal 2 × 2 games. Theory Decis. 24 (1988) 99117. Google Scholar
J. Kobler, U. Schoning and J. Torán, The Graph Isomorphism Problem : Its Structural Complexity. Birkhauser (1993).
Mavronicolas, M., Monien, B. and Wagner, K.W., Weighted boolean formula games, in Internet and Network Economics, Third International Workshop, WINE 2007. Lect. Notes Comput. Sci. 4858 (2007) 469481. Google Scholar
J. Nash, Non-Cooperative Games, in Classics in Game Theory (1997) 14–26.
M.J. Osborne, An Introduction to Game Theory. Oxford University Press (2003).
M.J. Osborne and A. Rubinstein, A Course in Game Theory. MIT Press (1994).
G. Schoenebeck and S.P. Vadhan, The computational complexity of Nash equilibria in concisely represented games, in ACM Conf. Electr. Commer. (2006) 270–279.
Siorpaes, K. and Hepp, M., Ontogame : Weaving the semantic web by online games, in ESWC-2008. Lect. Notes Comput. Sci. 5021 (2008) 751766. Google Scholar
Siorpaes, K. and Hepp, M., Games with purpose for the semantic web. IEEE Intell. Syst. 23 (2008) 5060. Google Scholar
von Ahn, L., Games with a purpose. Comput. 39 (2006) 9294. Google Scholar
Voorneveld, M., Best-response potential games. Econ. Lett. 66 (2000) 289295. Google Scholar
J. Williams, The Complet Strategyst. Dover (1986).