Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-26T01:01:44.675Z Has data issue: false hasContentIssue false

On Critical exponents in fixed points of k-uniform binary morphisms

Published online by Cambridge University Press:  20 December 2007

Dalia Krieger*
Affiliation:
School of Computer Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada; d2kriege@cs.uwaterloo.ca
Get access

Abstract

Let w be an infinite fixed point of a binary k-uniform morphism f, and let Ew be the critical exponent of w. We give necessary and sufficient conditions for Ew to be bounded, and an explicit formula to compute it when it is. In particular, we show that Ew is always rational. We also sketch an extension of our method to non-uniform morphisms over general alphabets.

Type
Research Article
Copyright
© EDP Sciences, 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

J.-P. Allouche and J. Shallit, Automatic Sequences: Theory, Applications, Generalizations. Cambridge University Press (2003).
J. Berstel, Axel Thue's Papers on Repetitions in Words: A Translation. Publications du Laboratoire de Combinatoire et d'Informatique Mathématique 20, Université du Québec à Montréal (1995).
J. Berstel, On the Index of Sturmian Words, in Jewels are forever. Springer, Berlin (1999) 287–294.
Cao, W.-T. and Wen, Z.-Y., Some properties of the factors of Sturmian sequences. Theoret. Comput. Sci. 304 (2003) 365385. CrossRef
Carpi, A. and de Luca, A., Special factors, periodicity, and an application to Sturmian words. Acta Informatica 36 (2000) 9831006. CrossRef
J. Cassaigne, An algorithm to test if a given circular HD0L-language avoids a pattern, in IFIP World Computer Congress'94 1 (1994) 459–464.
Damanik, D. and Lenz, D., The index of Sturmian sequences. Eur. J. Combin. 23 (2002) 2329. CrossRef
Ehrenfeucht, A. and Rozenberg, G., Repetition of subwords in D0L languages. Inform. Control 59 (1983) 1335. CrossRef
Fine, N.J. and Wilf, H.S., Uniqueness theorems for periodic functions. Proc. Amer. Math. Soc. 16 (1965) 109114. CrossRef
Frid, A.E., On uniform DOL words. STACS'98 1373 (1998) 544554. CrossRef
Justin, J. and Pirillo, G., Fractional powers in Sturmian words. Theoret. Comput. Sci. 255 (2001) 363376. CrossRef
Klepinin, A.V. and Sukhanov, E.V., On combinatorial properties of the Arshon sequence. Discrete Appl. Math. 114 (2001) 155169. CrossRef
Kobayashi, Y. and Otto, F., Repetitiveness of languages generated by morphisms. Theoret. Comput. Sci. 240 (2000) 337378. CrossRef
Krieger, D., On critical exponents in fixed points of binary k-uniform morphisms, in STACS 2006: 23rd Annual Symposium on Theoretical Aspects of Computer Science, edited by B. Durand and W. Thomas. Lect. Notes. Comput. Sci. 3884 (2006) 104114. CrossRef
Krieger, D., On critical exponents in fixed points of non-erasing morphisms. Theoret. Comput. Sci. 376 (2007) 7088. CrossRef
M. Lothaire, Algebraic Combinatorics on Words, Vol. 90 of Encyclopedia of Mathematics and Its Applications. Cambridge University Press (2002).
Lyndon, R.C. and Schützenberger, M.P., The equation aM = bNcP in a free group. Michigan Math. J. 9 (1962) 289298.
Mignosi, F., Infinite words with linear subword complexity. Theoret. Comput. Sci. 65 (1989) 221242. CrossRef
Mignosi, F. and Pirillo, G., Repetitions in the Fibonacci infinite word. RAIRO-Theor. Inf. Appl. 26 (1992) 199204. CrossRef
Mignosi, F. and Séébold, P., If a D0L language is k-power free then it is circular. ICALP'93. Lect. Notes Comput. Sci. 700 (1993) 507518. CrossRef
Mossé, B., Puissances de mots et reconnaissabilité des points fixes d'une substitution. Theoret. Comput. Sci. 99 (1992) 327334. CrossRef
Thue, A., Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen. Norske vid. Selsk. Skr. Mat. Nat. Kl. 1 (1912) 167.
Vandeth, D., Sturmian Words and Words with Critical Exponent. Theoret. Comput. Sci. 242 (2000) 283300. CrossRef