Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-25T23:36:50.019Z Has data issue: false hasContentIssue false

Dejean's conjecture holds for N ≥ 27

Published online by Cambridge University Press:  29 September 2009

James Currie
Affiliation:
Department of Mathematics and Statistics, University of Winnipeg, 515 Portage Avenue, Winnipeg, Manitoba R3B 2E9, Canada; j.currie@uwinnipeg.ca
Narad Rampersad
Affiliation:
Department of Mathematics and Statistics, University of Winnipeg, 515 Portage Avenue, Winnipeg, Manitoba R3B 2E9, Canada; j.currie@uwinnipeg.ca
Get access

Abstract

We show that Dejean's conjectureholds for n ≥ 27. This brings the final resolution of the conjecture by the approach of Moulin Ollagnier within range of the computationally feasible.

Type
Research Article
Copyright
© EDP Sciences, 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brandenburg, F.J., Uniformly growing k-th powerfree homomorphisms. Theoret. Comput. Sci. 23 (1983) 6982. CrossRef
Brinkhuis, J., Non-repetitive sequences on three symbols. Quart. J. Math. Oxford 34 (1983) 145149. CrossRef
Carpi, A., Dejean's, On conjecture over large alphabets. Theoret. Comput. Sci. 385 (2007) 137151. CrossRef
Currie, J.D. and Rampersad, N., Dejean's conjecture holds for n ≥ 30. Theoret. Comput. Sci. 410 (2009) 28852888. CrossRef
J.D. Currie, N. Rampersad, A proof of Dejean's conjecture, http://arxiv.org/pdf/0905.1129v3.
Dejean, F., Sur un théorème de Thue. J. Combin. Theory Ser. A 13 (1972) 9099. CrossRef
Ilie, L., Ochem, P. and Shallit, J., A generalization of repetition threshold. Theoret. Comput. Sci. 345 (2005) 359369. CrossRef
D. Krieger, On critical exponents in fixed points of non-erasing morphisms. Theoret. Comput. Sci. 376 (2007) 70–88.
M. Lothaire, Combinatorics on Words, Encyclopedia of Mathematics and its Applications 17. Addison-Wesley, Reading (1983).
Mignosi, F. and Pirillo, G., Repetitions in the Fibonacci infinite word. RAIRO-Theor. Inf. Appl. 26 (1992) 199204. CrossRef
Mohammad-Noori, M. and Currie, J.D., Dejean's conjecture and Sturmian words. Eur. J. Combin. 28 (2007) 876890. CrossRef
Moulin Ollagnier, J., Proof of Dejean's conjecture for alphabets with 5, 6, 7, 8, 9, 10 and 11 letters. Theoret. Comput. Sci. 95 (1992) 187205. CrossRef
Pansiot, J.-J., À propos d'une conjecture de F. Dejean sur les répétitions dans les mots. Discrete Appl. Math. 7 (1984) 297311. CrossRef
M. Rao, Last cases of Dejean's Conjecture, http://www.labri.fr/perso/rao/publi/dejean.ps.
Thue, A., Über unendliche Zeichenreihen. Norske Vid. Selsk. Skr. I. Mat. Nat. Kl. Christiana 7 (1906) 122.
Thue, A., Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen. Norske Vid. Selsk. Skr. I. Mat. Nat. Kl. Christiana 1 (1912) 167.