Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-12T01:51:35.006Z Has data issue: false hasContentIssue false

The globals of pseudovarieties of ordered semigroups containing B2 and an application to a problem proposed by Pin

Published online by Cambridge University Press:  15 March 2005

Jorge Almeida
Affiliation:
Centro de Matemática, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal; jalmeida@fc.up.pt
Ana P. Escada
Affiliation:
Departamento de Matemática, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, Apartado 3008, 3001-454 Coimbra, Portugal.
Get access

Abstract

Given a basis of pseudoidentities for a pseudovariety of ordered semigroups containing the 5-element aperiodic Brandt semigroup B2, under the natural order, it is shown that the same basis, over the most general graph over which it can be read, defines the global. This is used to show that the global of the pseudovariety of level 3/2 of Straubing-Thérien's concatenation hierarchy has infinite vertex rank.

Type
Research Article
Copyright
© EDP Sciences, 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Almeida, J., Hyperdecidable pseudovarieties and the calculation of semidirect products. Int. J. Algebra Comput. 9 (1999) 241261. CrossRef
Almeida, J., A syntactical proof of locality of DA. Int. J. Algebra Comput. 6 (1996) 165177. CrossRef
J. Almeida, Finite Semigroups and Universal Algebra. World Scientific, Singapore (1995). English translation.
J. Almeida, Finite semigroups: an introduction to a unified theory of pseudovarieties, in Semigroups, Algorithms, Automata and Languages, edited by G.M.S. Gomes, J.-E. Pin and P.V. Silva. World Scientific, Singapore (2002) 3–64.
Almeida, J., Azevedo, A. and Teixeira, L., On finitely based pseudovarieties of the forms V ∗ D and V ∗ Dn . J. Pure Appl. Algebra 146 (2000) 115. CrossRef
Almeida, J. and Azevedo, A., Globals of commutative semigroups: the finite basis problem, decidability, and gaps. Proc. Edinburgh Math. Soc. 44 (2001) 2747. CrossRef
Almeida, J. and Weil, P., Profinite categories and semidirect products. J. Pure Appl. Algebra 123 (1998) 150. CrossRef
Arfi, M., Polynomial operations and rational languages, 4th STACS. Lect. Notes Comput. Sci. 247 (1991) 198206. CrossRef
Arfi, M., Opérations polynomiales et hiérarchies de concaténation. Theor. Comput. Sci. 91 (1991) 7184. CrossRef
Brzozowski, J.A., Hierarchies of aperiodic languages. RAIRO Inform. Théor. 10 (1976) 3349.
Brzozowski, J.A. and Knast, R., The dot-depth hierarchy of star-free languages is infinite. J. Comp. Syst. Sci. 16 (1978) 3755. CrossRef
Brzozowski, J.A. and Simon, I., Characterizations of locally testable events. Discrete Math. 4 (1973) 243271. CrossRef
S. Eilenberg, Automata, Languages and Machines, Vol. B. Academic Press, New York (1976).
K. Henckell and J. Rhodes, The theorem of Knast, the PG = BG and type II conjecture, in Monoids and Semigroups with Applications, edited by J. Rhodes. World Scientific (1991) 453–463.
Jones, P., Profinite categories, implicit operations and pseudovarieties of categories. J. Pure Applied Algebra 109 (1996) 6195. CrossRef
Knast, R., A semigroup characterization of dot-depth one languages. RAIRO Inform. Théor. 17 (1983) 321330. CrossRef
Knast, R., Some theorems on graphs congruences. RAIRO Inform. Théor. 17 (1983) 331342. CrossRef
M.V. Lawson, Inverse Semigroups: the Theory of Partial Symmetries. World Scientific, Singapore (1998).
Margolis, S.W. and Pin, J.-E., Product of group languages, FCT Conference. Lect. Notes Comput. Sci. 199 (1985) 285299. CrossRef
McNaughton, R., Algebraic decision procedures for local testability. Math. Systems Theor. 8 (1974) 6076. CrossRef
Pin, J.-E., A variety theorem without complementation. Izvestiya VUZ Matematika 39 (1985) 8090. English version, Russian Mathem. (Iz. VUZ) 39 (1995) 74–83.
J.-E. Pin, Syntactic Semigroups, Chapter 10 in Handbook of Formal Languages, edited by G. Rosenberg and A. Salomaa, Springer (1997).
Pin, J.-E., Bridges for concatenation hierarchies, in 25th ICALP, Berlin. Lect. Notes Comput. Sci. 1443 (1998) 431442. CrossRef
J.-E. Pin and H. Straubing, Monoids of upper triangular matrices, Colloquia Mathematica Societatis Janos Boylai 39, Semigroups, Szeged (1981) 259–272.
Pin, J.-E. and Weil, P., Reiterman, A theorem for pseudovarieties of finite first-order structures. Algebra Universalis 35 (1996) 577595. CrossRef
Pin, J.-E. and Weil, P., Polynomial closure and unambiguous product. Theory Comput. Syst. 30 (1997) 139. CrossRef
Pin, J.-E., Pinguet, A. and Weil, P., Ordered categories and ordered semigroups. Comm. Algebra 30 (2002) 56515675. CrossRef
Reilly, N., Free combinatorial strict inverse semigroups. J. London Math. Soc. 39 (1989) 102120. CrossRef
Reiterman, J., The Birkhoff theorem for finite algebras. Algebra Universalis 14 (1982) 110. CrossRef
I. Simon, Piecewise testable events, in Proc. 2th GI Conf., Lect. Notes Comput. Sci. 33 (1975) 214–222.
I. Simon, The product of rational languages, in Proc. ICALP 1993, Lect. Notes Comput. Sci. 700 (1993) 430–444.
Straubing, H., A generalization of the Schützenberger product of finite monoids. Theor. Comp. Sci. 13 (1981) 137150. CrossRef
Straubing, H., Finite semigroup varieties of the form V ∗ D. J. Pure Appl. Algebra 36 (1985) 5394. CrossRef
Straubing, H., Semigroups and languages of dot-depth two. Theor. Comput. Sci. 58 (1988) 361378. CrossRef
Straubing, H. and Weil, P., On a conjecture concerning dot-depth two languages. Theor. Comput. Sci. 104 (1992) 161183. CrossRef
Thérien, D. and Weiss, A., Graph congruences and wreath products. J. Pure Appl. Algebra 36 (1985) 205215. CrossRef
Tilson, B., Categories as algebras: an essential ingredient in the theory of monoids. J. Pure Appl. Algebra 48 (1987) 83198. CrossRef
Weil, P., Some results on the dot-depth hierarchy. Semigroup Forum 46 (1993) 352370. CrossRef