Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T00:08:24.962Z Has data issue: false hasContentIssue false

Coloration de graphes : fondements et applications

Published online by Cambridge University Press:  15 November 2003

Dominique de Werra
Affiliation:
IMA FSB, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Suisse; dewerra.ima@epfl.ch.
Daniel Kobler
Affiliation:
Tm Bioscience, 439 University Ave. Ste. 1100, Toronto (Ontario) M5G 1Y8, Canada; dkobler@tmbioscience.com.
Get access

Abstract

The classical colouring models are well known thanks in large part to their applications to scheduling type problems; we describe the basic concepts of colourings together with a number of variations and generalisations arising from scheduling problems such as the creation of school schedules. Some exact and heuristic algorithms will be presented, and we will sketch solution methods based on tabu search to find approximate solutions to large problems. Finally we will also mention the use of colourings for creating schedules in sports leagues and for computer file transfer problems. This paper is an extended version of [37].

Type
Research Article
Copyright
© EDP Sciences, 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alon, N. et Tarsi, M., Colorings and orientations of graphs. Combinatorica 12 (1992) 125-134. CrossRef
Bellare, M., Goldreich, O. et Sudan, M., Free bits, PCPs and non-approximability - towards tight results. SIAM J. Comput. 27 (1998) 804-915. CrossRef
C. Berge, Graphes. Gauthier-Villars, Paris (1983).
C. Berge, Hypergraphes. Gauthier-Villars, Paris (1987).
C. Berge et V. Chvátal, Topics on Perfect Graphs. Ann. Discrete Math. 21 (1984).
Biró, M., Hujter, M. et Tuza, Zs., Precoloring extension. I. Interval graphs. Discrete Math. 100 (1992) 267-279. CrossRef
Bodlaender, H.L., Jansen, K. et Woeginger, G., Scheduling with incompatible jobs. Discrete Appl. Math. 55 (1994) 219-232. CrossRef
V. Chvátal, Perfectly ordered graphs, in Topics on Perfect Graphs. North Holland Math. Stud. 88 , Annals Discrete Math. 21 (1984) 63-65.
Coffman Jr, E.G.., M.G. Garey, D.S. Johnson et A.S. Lapaugh, Scheduling file transfers. SIAM J. Comput. 14 (1985) 744-780. CrossRef
O. Coudert, Exact Coloring of Real-Life Graphs is Easy, in Proc. of 34th ACM/IEEE Design Automation Conf. ACM Press, New York (1997) 121-126.
Dubois, N. et de Werra, D., EPCOT: An Efficient Procedure for Coloring Optimally with Tabu Search. Comput. Math. Appl. 25 (1993) 35-45. CrossRef
K. Easton, G. Nemhauser et M. Trick, The traveling tournament problem: description and benchmarks. GSIA, Carnegie Mellon University (2002).
C. Fleurent et J.A. Ferland, Genetic and Hybrid Algorithms for Graph Coloring, édité par G. Laporte et I.H. Osman (éds). Metaheuristics in Combinatorial Optimization, Ann. Oper. Res. 63 (1996) 437-461.
Garey, M.G. et Johnson, D.S., The complexity of near-optimal graph coloring. J. ACM 23 (1976) 43-49. CrossRef
Garey, M.G., Johnson, D.S. et Stockmeyer, L., Some simplified NP-complete graph problems. Theoret. Comput. Sci. 1 (1976) 237-267. CrossRef
F. Glover et M. Laguna, Tabu Search. Kluwer Academic Publ. (1997).
M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York (1984).
M. Grötschel, L. Lovasz et A. Schrijver, Geometric Algorithms and Combinatorial Optimization. Springer-Verlag, Berlin (1988).
Halldórsson, M.M., A still better performance guarantee for approximate graph coloring. Inform. Process. Lett. 45 (1993) 19-23. CrossRef
Hansen, P., Hertz, A. et Kuplinsky, J., Bounded Vertex Colorings of Graphs. Discrete Math. 111 (1993) 305-312. CrossRef
Hansen, P., Kuplinsky, J. et de Werra, D., Mixed Graph Coloring. Math. Meth. Oper. Res. 45 (1997) 145-160. CrossRef
Hilton, A.J.W. et de Werra, D., A sufficient condition for equitable edge-colourings of simple graphs. Discrete Math. 128 (1994) 179-201. CrossRef
E.L. Lawler, Combinatorial Optimization: Networks and Matroids. Holt, Rinehart and Winston, New York (1976).
Leighton, F., Graph Coloring Al, Agorithm for Large Scheduling Problems. J. Res. National Bureau Standards 84 (1979) 742-774. CrossRef
M. Middendorf et F. Pfeiffer, On the complexity of recognizing perfectly orderable graphs, Discrete Mathematics 80 (1990) 327-333.
Pnueli, A., Lempel, A. et Even, S., Transitive orientation of graphs and identification of permutation graphs. Canadian J. Math. 23 (1971) 160-175. CrossRef
F.S. Roberts, Discrete Mathematical Models. Prentice-Hall, Englewood Cliffs (1976).
Zs. Tuza, Graph colorings with local constraints - a survey, Discussiones Mathematicae - Graph Theory 17 (1997) 161-228.
V.G. Vizing, On an estimate of the chromatic class of a p -graph (en russe), Metody Discret Analiz. 3 (1964) 25-30.
D.J.A. Welsh et M.B. Powell, An upper bound on the chromatic number of a graph and its application to timetabling problems, Computer J. 10 (1967) 85-87.
D. de Werra, Some models of graphs for scheduling sports competitions, Discrete Applied Mathematics 21 (1988) 47-65.
D. de Werra, The combinatorics of timetabling, European Journal of Operational Research 96 (1997) 504-513.
D. de Werra, On a multiconstrained model for chromatic scheduling, Discrete Applied Mathematics 94 (1999) 171-180.
D. de Werra, Ch. Eisenbeis, S. Lelait et B. Marmol, On a graph-theoretical model for cyclic register allocation, Discrete Applied Mathematics 93 (1999) 191-203.
D. de Werra et Y. Gay, Chromatic scheduling and frequency assignment, Discrete Applied Mathematics 49 (1994) 165-174.
D. de Werra et A. Hertz, Consecutive colorings of graphs, Zeischrift für Operations Research 32 (1988) 1-8.
D. de Werra et D. Kobler, Coloration et ordonnencement chromatique, ORWP 00/04, Ecole Polytechnique Fédérale de Lausanne, 2000.
X. Zhou et T. Nishizeki, Graph Coloring Algorithms, IEICE Trans. on Information and Systems E83-D (2000) 407-417.