Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-11T20:02:57.966Z Has data issue: false hasContentIssue false

From L. Euler to D. König

Published online by Cambridge University Press:  22 July 2009

Dominique de Werra*
Affiliation:
École Polytechnique Fédérale de Lausanne (Switzerland); dominique.dewerra@epfl.ch
Get access

Abstract

Starting from the famous Königsberg bridge problem which Euler described in 1736, we intend to show that some results obtained 180 years later by König are very close to Euler's discoveries.

Type
Research Article
Copyright
© EDP Sciences, ROADEF, SMAI, 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

C. Berge, Graphes. Gauthier-Villars, Paris (1983).
D. de Werra, Equitable colorations of graphs. Revue Française d'Informatique et de Recherche Opérationnelle R-3 (1971) 3–8.
L. Euler, Solutio problematis ad geometriam situs pertinentis, Commentarii Academiae Scientiarum Imperialis Petropolitanae 8 (1736) 128–140. Reprinted in: Leonhardi Euleri – Opera Omnia – Series Prima – Opera Mathematica – Commentationes Algebraicae, L.G. du Pasquier Ed., Teubner, Leipzig (1923) 1–10.
Gabow, H.N., Using Euler partitions to edge color bipartite multigraphs. Int. J. Parallel Prog. 5 (1976) 345355.
Gribkovskai, I., Halskan, Ø. and Laporte, G., The bridges of Königsberg – a historical perspective. Networks 49 (2007) 199203. CrossRef
Hierholzer, C., Über die Möglichkeit, einen Linienzug ohne Wiederholung und ohne Unterbrechung zu umfahren. Math. Ann. 6 (1873) 3032. CrossRef
König, D., Graphok és alkalmazásuk a determinánsok és a halmazok elméletére (Hungarian). Mathematikai és Természettudományi Értesitö 34 (1916) 104119.
Schrijver, A., Bipartite edge coloring in $0(\delta m) \mbox{time}$ . SIAM J. Comput. 28 (1998) 841846. CrossRef