Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-26T00:01:51.819Z Has data issue: false hasContentIssue false

A quantitative model for the evaluationof dose rates effects following exposureto low-dose gamma-radiation

Published online by Cambridge University Press:  17 June 2005

H. Ogata
Affiliation:
National Institute of Public Health, 2-3-6, Minami, Wako 351-0197 Japan
C. Furukawa
Affiliation:
Institute of Research and Innovation, 1201 Takada, Kashiwa 277-0861, Japan
Y. Kawakami
Affiliation:
Institute of Research and Innovation, 1201 Takada, Kashiwa 277-0861, Japan
J. Magae
Affiliation:
Institute of Research and Innovation, 1201 Takada, Kashiwa 277-0861, Japan
Get access

Abstract

Simultaneous consideration of the irradiation time and the cumulative dose is necessary for evaluating the risk of long-term exposure to radiation at low dose. This study intends to examine several numerical relationships between doses and dose rates in biological responses to gamma radiation. Data on inhibition of [3H] thymidine uptake and micronucleus formation in human osteosarcoma cells were analyzed using the median effective dose (MED) as a measure of the risk. MEDs were calculated using parameters estimated by fitting general logistic curves to the dose-response relationships for each group defined by irradiation time. Both biological responses, the inhibition of [3H] thymidine uptake and micronucleus formation, decreased sharply when the dose rates were less than 0.01 Gy/h. Exponential functions were fitted to the log relationships between MEDs and dose rates. This modified exponential model described well the quantitative effect of dose rates on MEDs, and suggested that risk is extremely low at very low dose rates.

Type
Other
Copyright
© EDP Sciences, 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Académie des Sciences (1995) Problèmes Liés aux Effets des Faibles Doses des Radiations Ionisantes. Rapport n° 34. Technique et Documentation, Paris.
Ainsworth, E.J., Leong, G.F., Kendall, K., Alpen, E.L. (1965) Comparative lethality responses of neutron and X-irradiated dogs: Influence of dose rate and exposure aspect, Radiat. Res. 26, 32-43. CrossRef
Armitage P., Colton T. (Eds.) (1998) Encyclopedia of Biostatistics, p. 1727. Wiley, Chichester.
Armitage, P., Doll, R. (1954) The age distribution of cancer and multi-stage theory of carcinogenesis, Br. J. Cancer 8, 1-12. CrossRef
Ashford J.R. (1985) Quantal response analysis, in: Encyclopedia of Statistical Sciences, Vol. 7 (Kotz S., Johnson N., Eds), pp. 402-406. Wiley, New York.
Boreham, D.R., Dolling, J.A., Maves, S.R., Siwarungsum, N., Mitchel, R.E. (2000) Dose rate effects for apoptosis and micronucleus formation in gamma-irradiated human lymphocytes, Radiat. Res. 153, 579-586. CrossRef
Crompton, N.E.A., Barth, B., Kiefer, J. (1990) Inverse dose rate effect for the induction of 6-thioguanine-resistant mutations in Chinese hamster V79-S cells by 60Co $\gamma$-rays, Radiat. Res. 124, 300-308. CrossRef
Geard, C.R., Chen, C.Y. (1990) Micronuclei and clonogenicity following low- and high-dose rate gamma irradiation of normal human fibroblasts, Radiat. Res. 124, S56-S51. CrossRef
Hill, C.K., Han, A., Elkind, M.M. (1984) Fission spectrum neutrons at low dose rate enhance neoplastic transformation in the linear, low dose region (0-10 cGy), Int. J. Radiat. Biol. 46, 11-15.
Kallmann, R.F. (1962) The effect of dose rate on mode of acute radiation death of C57BL and BALB/c mice, Radiat. Res. 16, 796-810. CrossRef
Kellerer, A.M., Rossi, H.H. (1972) The theory of dual radiation action, Curr. Topics Radiat. Res. 8, 85-158.
Koznova, L.B. (1978) Effects of radiation dose rate on median enteric syndromes, Radiobiologiia 18, 63-69.
Kunugita, N., Kakihara, H., Kawamoto, T., Norimura, T. (2002) Micronuclei induced by low dose rate irradiation in early spermatids of p53 null and wild mice, J. Radiat. Res. 43, S205-S207. CrossRef
Logie, L.C., Harris, M.D., Tatsch, R.E., Van Hooser, E.N. (1960) An analysis of the LD50/30 as related to radiation sensitivity, Radiat. Res. 12, 349-356. CrossRef
Magae, J., Hoshi, Y., Furukawa, C., Kawakami, Y., Ogata, H. (2003) Quantitative analysis of biological responses to ionizing radiation, including dose, irradiation time and dose rate, Radiat. Res. 160, 543-548. CrossRef
McMillan, T.J., Eady, J.J., Peacock, J.H., Steel, G.G. (1992) Cellular recovery in two sub-lines of the L5178 Y murine leukemic lymphoblast cell line differing in their sensitivity to ionizing radiation, Int. J. Radiat. Biol. 61, 49-56. CrossRef
Miller, R.C., Randers-Pehrson, G., Hieber, L., Marino, S.A., Richards, M. Hall, E.J. (1993) The inverse dose rate effect for oncogenic transformation by charged particles is dependent on linear energy transfer, Radiat. Res. 133, 360-364. CrossRef
Monchaux, G., Morlier, J.P., Altmeyer, S., Debroche, M., Morin, M. (1999) Influence of exposure rate on lung cancer induction in rats exposed to radon progeny, Radiat. Res. 152, S137-S140. CrossRef
Moolgavkar, S.H., Venzon, D.J. (1979) Two-event models for carcinogenesis: incidence curves for childhood and adult tumours, Math. Biosci. 47, 55-77. CrossRef
Morgan B.J.T. (1992) Analysis of Quantal Response Data. Chapman & Hall, London.
Morin, M., Masse, R., Lafuma, J. (1990) Effets cancérogènes de l’irradiation gamma à faible débit de dose, C.R. Ac. Sc. 311, 459-466.
Morlier, J.P., Morin, M., Chameaud, J., Masse, R., Bothard, S., Lafuma, J. (1992) Importance du role du débit de dose sur l’apparition des cancers chez le rat après inhalation de radon, C.R. Ac. Sc. 315, 463-466.
Nagasawa, H., Little, J.B., Tsang, N.M., Saunders, E., Tesmer, J., Strniste, G.F. (1992) Effect of dose rate on the survival of irradiated human skin fibroblasts, Radiat. Res. 132, 375-379. CrossRef
Neter J., Wasserman W., Kunter M.H. (1989) Applied Linear Regression Models, 2nd edn. Irwin, Homewood.
Norusis M.J. (1999) SPSS Regression ModelsTM, Ver. 10.0. SPSS Inc., Chicago.
Russell, W.L. (1977) Mutation frequencies in female mice and the estimation of genetic hazards of radiation in women, Proc. Natl. Acad. Sci. U.S.A. 74, 3523-3527. CrossRef
Russell, W.L., Kelly, E.M. (1982) Mutation frequencies in male mice and the estimation of genetic hazards of radiation in men, Proc. Natl. Acad. Sci. U.S.A. 79, 542-544. CrossRef
Scott, B.R., Hahn, F.F., McClellan, R.O., Seiler, F.A. (1988) Risk estimators for radiation-induced bone marrow syndrome lethality in humans, Risk Analysis 8, 393-402. CrossRef
Selby, P.B., Lee, S.S., Kelly, E.M., Bangham, J.W., Raymer, G.D., Hunsicker, P.R. (1991) Specific-locus experiments show that female mice exposed near the time of birth to low-LET ionizing radiation exhibit both a low mutational response and a dose rate effect, Mutat. Res. 249, 351-367. CrossRef
StatSoft Inc. (1999) STATISTICA User’s Manual. StatSoft Inc. Japan, Tokyo.
Vilenchik, M.M., Knudson, A.G. Jr. (2000) Inverse radiation dose rate effects on somatic and germ-line mutations and DNA damage rates, Proc. Natl. Acad. Sci. U.S.A. 97, 5381-5386. CrossRef
Widel, M., Przybyszewski, W.M. (1998) Inverse dose rate effect for the induction of micronuclei in Lewis lung carcinoma after exposure to cobalt-60 gamma rays, Radiat. Res. 149, 98-102. CrossRef