Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T21:14:53.279Z Has data issue: false hasContentIssue false

Subsistence Continuity Linked to Consumption of Marine Protein in the Formative Period in the Interfluvic Coast of Northern Chile: Re-Assessing Contacts with Agropastoral Groups from Highlands

Published online by Cambridge University Press:  23 February 2016

Pedro Andrade*
Affiliation:
Department of Sociology and Anthropology, Universidad de Concepción, Chile
Ricardo Fernandes
Affiliation:
Institute for Ecosystem Research, University of Kiel, Germany Leibniz Laboratory for Radiometric Dating and Isotope Research, University of Kiel, Germany McDonald Institute for Archaeological Research, University of Cambridge, United Kingdom
Katia Codjambassis
Affiliation:
Department of Sociology and Anthropology, Universidad de Concepción, Chile
Josefina Urrea
Affiliation:
Department of Sociology and Anthropology, Universidad de Concepción, Chile
Laura Olguín
Affiliation:
PhD Program, Universidad Católica del Norte, Chile
Sandra Rebolledo
Affiliation:
Department of Anthropology, Universidad de Chile
Francisca Lira
Affiliation:
Department of Sociology and Anthropology, Universidad de Concepción, Chile
Christian Aravena
Affiliation:
Department of Sociology and Anthropology, Universidad de Concepción, Chile
Mauricio Berríos
Affiliation:
Department of Sociology and Anthropology, Universidad de Concepción, Chile
*
2Corresponding author. Email: pandradem@udec.cl.

Abstract

From material culture evidence dating as early as 7500 cal BC, it has been established that populations from the interfluvic coast in northern Chile adapted to a maritime economic livelihood. During the 2nd millennium BC, local populations began to experience major social changes arising mainly from an increase in contacts with agropastoral populations from the highlands of the Andes. New radiocarbon data and stable isotope (δ15Ncol, δ13Ccol, and δ13Cap) analyses of human bone remains from interfluvic coastal individuals were obtained. The data showed that these individuals, at the time of contact with highland populations, maintained a mode of subsistence relying principally on marine protein. This suggests that, although instances of social change may have arisen, the livelihoods linked to the consumption of marine resources would have remained constant, demonstrating a high degree of resistance in changing local lifestyles.

Type
Articles
Copyright
Copyright © 2015 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aldunate, C, Berenguer, J, Castro, V, Cornejo, L, Martínez, JL, Sinclaire, C. 1986. Cronología y asentamiento en el Región del Loa Superior. Chungara 16–17:333–46.Google Scholar
Ambrose, S. 1990. Preparation and characterization of bone and tooth collagen for stable carbon and nitrogen isotope analysis. Journal of Archaeological Science 17(4):431–51.CrossRefGoogle Scholar
Andrade, P, Castro, V. 2015. Reconstrucción del modo de vida de endividuos del arcaico de la costa arreica del Norte de Chile: una aproximación bioarqueológica desde el sitio Copaca 1. Chungara. In press.Google Scholar
Andrade, P, Salazar, D, Urrea, J, Castro, V. 2014. Modos de vida de los cazadores-recolectores de la costa arreica del norte grande de Chile: una aproximación bioarqueológica a las poblaciones prehistórica de Taltal. Chungara 46(3):467–91.Google Scholar
Aufderheide, AC, Aturaliya, S, Focacci, G. 2002. Enfermedades pulmonares de una muestra de población del cementerio AZ-75, Valle de Azapa, Norte de Chile. Chungara 34(2):253–63.Google Scholar
Ballester, B, Clarot, A. 2014. La Gente de los Túmulos de Tierra. Estudio, Conservación y Difusión de Colecciones Arqueológicas de la Comuna de Mejillones. Antofagasta: Ilustre Municipalidad de Mejillones.Google Scholar
Bronk Ramsey, C. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51(1):337–60.Google Scholar
Cherkinsky, A. 2009. Can we get a good radiocarbon age from “bad bone”? Determining the reliability of radiocarbon age from bioapatite. Radiocarbon 51(2):647–55.Google Scholar
Cordain, L, Miller, JB, Eaton, SB, Mann, N, Holt, SH, Speth, JD. 2000. Plant-animal subsistence ratios and macronutrient energy estimations in worldwide hunter-gatherer diets. The American Journal of Clinical Nutrition 71(3):682–92.CrossRefGoogle ScholarPubMed
DeNiro, MJ. 1985. Postmortem preservation and alteration of in vivo bone collagen isotope ratios in relation to palaeodietary reconstruction. Nature 317(6040):806–9.CrossRefGoogle Scholar
DeNiro, MJ, Epstein, S. 1976. You are what you eat (plus a few permil): the carbon isotope cycle in food chains. Geological Society of America Abstracts with Programs 8:834–5.Google Scholar
Fernandes, R. 2015. A simple(r) model to predict the source of dietary carbon in individual consumers. Archaeometry. DOI: 10.1111/arcm.12193.CrossRefGoogle Scholar
Fernandes, R, Nadeau, M-J, Grootes, P. 2012. Macronutrient-based model for dietary carbon routing in bone collagen and bioapatite. Archaeological and Anthropological Sciences 4(4):291301.Google Scholar
Fernandes, R, Millard, A, Brabec, M, Nadeau, M-J, Grootes, P. 2014. Food Reconstruction Using Isotopic Transferred Signals (FRUITS): a Bayesian model for diet reconstruction. PLoS ONE 9(2):e87436.Google Scholar
Fernandes, R, Grootes, P, Nadeau, M-J, Nehlich, O. 2015. Quantitative diet reconstruction of a Neolithic population using a Bayesian mixing model (FRUITS): the case study of Ostorf (Germany). American Journal of Physical Anthropology 158(2):325–40.Google Scholar
Froehle, AW, Kellner, CM, Schoeninger, MJ. 2012. Multivariate carbon and nitrogen stable isotope model for the reconstruction of prehistoric human diet. American Journal of Physical Anthropology 147(3):352–69.Google Scholar
Gallardo, F. 2009. Social interaction and rock art styles in the Atacama Desert (Northern Chile). Antiquity 83(321):619–33.Google Scholar
Gallardo, F, Cabello, G, Pimentel, G, Sepúlveda, M, Cornejo, L. 2012. Flujos de información visual, interacción social y pinturas rupestres en el desierto de Atacama (Norte de Chile). Estudios Atacameños 43:3552.CrossRefGoogle Scholar
Hogg, AG, Hua, Q, Blackwell, PG, Niu, M, Buck, CE, Guilderson, TP, Heaton, TJ, Palmer, JG, Reimer, PJ, Reimer, RW, Turney, CSM, Zimmerman, SRH. 2013. SHCal13 Southern Hemisphere calibration, 0–50,000 cal BP. Radiocarbon 55(4):1889–903.Google Scholar
Katzenberg, M. 2008. Stable isotope analysis: a tool for studying past diet, demography and life history. In: Katzenberg, K, Saunders, S, editors. Biological Anthropology of the Human Skeleton. Hoboken: Wiley. p 413–42.Google Scholar
Lee-Thorp, JA. 2008. On isotopes and old bones. Archaeometry 50(6):925–50.CrossRefGoogle Scholar
Llagostera, A. 2005. Culturas costeras precolombinas en el norte chileno: secuencia y subsistencia de las poblaciones arcaicas. In: Figueroa, E, editor. Biodiversidad Marina: Valoración, Uso, Perspectivas ¿Hacia dónde va Chile? Santiago: Editorial Universitaria. p 107–48.Google Scholar
Núñez, L, Santoro, C. 2011. El tránsito arcaico-formativo en la Circumpuna y Valles Occidentales del Centro Sur Andino: hacia los cambios “neolíticos.” Chungara 43(1):487530.Google Scholar
Núñez, L, Cartajena, I, Carrasco, C, de Souza, P, Grosjean, M. 2006. Emergencia de comunidades pastoralistas formativas en la Puna de Atacama. Estudios Atacameños 32:93117.Google Scholar
Olguín, L. 2011. Historia de un conchal: procesos de formación y secuencia ocupacional del sitio arqueológico Agua Dulce, costa arreica del Desierto de Atacama, comuna de Taltal, región de Antofagasta [PhD dissertation]. Santiago: Universidad de Chile. 181 p.Google Scholar
Olguín, L, Salazar, D, Jackson, D. 2014. Tempranas evidencias de navegación y caza de pesca de especies oceánicas en la costa Pacífica de Sudamérica (Taltal, ~7000 años cal. A.P.). Chungara 46(2):177–92.Google Scholar
Ortlieb, L, Vargas, G, Saliège, J-F. 2011. Marine radiocarbon reservoir effect along the northern Chile–southern Peru coast (14–24°S) throughout the Holocene. Quaternary Research 75(1):91103.Google Scholar
Otten, J, Pitzi, HI, Meyers, L. 2006. Dietary Reference Intakes: The Essential Guide to Nutrient Requirements. Washington, DC: National Academies Press:Google Scholar
Pacheco, A, Gómez, P. 2013. Análisis bioantropológico de los individuos recuperados de la Concentración 80. In: Aswakear Consultores, editor. Informe final salvataje Concentración 80, Sitio 1, Puerto Punta Totoralillo. Report on file at Laboratorio de Antropología Física de la Universidad de Chile, Santiago.Google Scholar
Pestle, W, Torres-Rouff, C, Gallardo, F, Ballester, B, Clarot, A. 2015. Mobility and exchange among marine hunter-gatherer and agropastoralist communities in the formative period Atacama desert. Current Anthropology 56(1):121–33.Google Scholar
Petruzzelli, B, Roberts, A, Pate, D, Santoro, C, Maddern, T, Carter, C, Westaway, M. 2012. Stable carbon and nitrogen isotopic analysis of skeletal remains from Azapa 71 and Pica 8, northern Chile: an assessment of human diet and landscape use in the Late Holocene. Journal of the Anthropological Society of South Australia 35:5280.Google Scholar
Pimentel, G, Rees, C, de Souza, P, Ayala, P. 2006. Estrategias de movilidad del periodo formativo en la depresión intermedia, Desierto de Atacama. Actas XVII Congreso de Arqueología Chilena. Valdivia: Sociedad Chilena de Arqueología, Universidad Austral, Ediciones Kultrún. p 1353–64.Google Scholar
Pimentel, G, Rees, C, de Souza, P, Arancibia, L. 2011. Viajeros costeros y caravaneros. Dos estrategias de movilidad en el periodo Formativo del Desierto de Atacama, Chile. In: Nuñez, L, Nielsen, A, editors. En Ruta. Arqueología, Historia y Etnografía del Tráfico Sur Andino. Grupo Encuentro Editorial. Argentina. p 4382.Google Scholar
Poulson, SR, Kuzminsky, S, Scott, G, Standen, V, Arriaza, B, Muñoz, I, Dorio, L. 2013. Paleodiet in northern Chile through the Holocene: extremely heavy δ15N values in dental calculus suggest a guanoderived signature? Journal of Archaeological Science 40(12):4576–85.Google Scholar
Rebolledo, S. 2014. Arcaico medio en la costa arreica: estrategias de caza y pesca costero-marítima en el sitio Zapatero [PhD dissertation] Santiago: Universidad de Chile. 130 p.Google Scholar
Richards, MP, Schulting, RJ, Hedges, REM. 2003. Archaeology: sharp shift in diet at onset of Neolithic. Nature 425(6956):366.Google Scholar
Roberts, A, Pate, D, Petruzzeli, B, Carter, C, Westaway, M, Santoro, C, Swift, J, Maddern, T, Jacobsen, G, Bertuch, F. 2013. Retention of hunter-gatherer economies among maritime foragers from Caleta Vitor, northern Chile, during the late Holocene: evidence from stable carbon and nitrogen isotopic analysis of skeletal remains. Journal of Achaeological Science 40(5):2360–72.Google Scholar
Salazar, D, Jackson, D, Guendon, J, Salinas, H, Morata, D, Figueroa, V, Manriquez, G, Castro, V. 2011. Early evidence (ca. 12000 BP) for iron oxide mining of the Pacific coast of South America. Current Anthropology 52(3):463–75.Google Scholar
Salazar, D, Figueroa, V, Andrade, P, Salinas, H, Power, X, Rebolledo, S, Parra, S, Orellana, H, Urrea, J. 2015. Cronología y organización económica de las poblaciones arcaicas de la costa de Taltal. Estudios Atacameños 50:746.Google Scholar
Santoro, C. 2000. El Formativo en la región de valles occidentales del área centro surandina (sur Perú-norte de Chile). In: Lederberger-Crespo, P, editor. Formativo Sudamericano. Quito: Ediciones bya-Ayala. p 243–54.Google Scholar
Schoeninger, MJ., DeNiro, MJ, Tauber, H. 1983. Stable nitrogen isotope ratios of bone collagen reflect marine and terrestrial components of prehistoric human diet. Science 220(4604):1381–3.Google Scholar
Sinclair, C. 2004. Prehistoria del Periodo Formativo en la Cuenca Alta del Rio Salado (Región del Loa Superior). Chungara, Volumen Especial:619–39.Google Scholar
Tauber, H. 1981. 13C evidence for dietary habits of prehistoric man in Denmark. Nature 292(5821):332–3.Google Scholar
Tieszen, LL, Iversen, E, Matzner, S. 1995. Dietary reconstruction based on carbon, nitrogen, and sulfur stable isotopes in the Atacama Desert, northern Chile. In: Aufderheide, AC, Martin, CR, editors. World Congress on Mummy Studies. Tenerife: Museo Arquelógico y Etnográfico de Tenerife, Organismo Autónomo de Museos y Centros. p 427–41.Google Scholar
Van der Merwe, NJ, Vogel, JC. 1978. 13C content of human collagen as a measure of prehistoric diet in woodland North America. Nature 276(5690):815–6.Google Scholar
Van der Merwe, NJ, Vogel, JC. 1983. Recent carbon isotope research and its implications for African archaeology. African Archaeological Review 1(1):3356.Google Scholar
Varela, V. 2009. La cerámica arqueológica de Taltal. Taltalia 2:118–29.Google Scholar