Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-26T21:46:05.028Z Has data issue: false hasContentIssue false

Radiocarbon Wiggle-Match Dating of Bulk Sediments—How Accurate can It Be?

Published online by Cambridge University Press:  09 February 2016

Anette Mellström*
Affiliation:
Department of Geology, Quaternary Sciences, Lund University, Sölvegatan 12, SE-223 62 Lund, Sweden
Raimund Muscheler
Affiliation:
Department of Geology, Quaternary Sciences, Lund University, Sölvegatan 12, SE-223 62 Lund, Sweden
Ian Snowball
Affiliation:
Department of Geology, Quaternary Sciences, Lund University, Sölvegatan 12, SE-223 62 Lund, Sweden Department of Earth Sciences - Geophysics, Uppsala University, Villavägen 16, SE-752 36 Uppsala, Sweden
Wenxin Ning
Affiliation:
Department of Geology, Quaternary Sciences, Lund University, Sölvegatan 12, SE-223 62 Lund, Sweden
Eeva Haltia
Affiliation:
Department of Geology, Quaternary Sciences, Lund University, Sölvegatan 12, SE-223 62 Lund, Sweden
*
2Corresponding author. Email: Anette.Mellstrom@geol.lu.se.

Abstract

We used the radiocarbon wiggle-match dating technique to date the varved sediments of Lake Gyltigesjön in southern Sweden with the main aim to construct an accurate chronology covering the period between about 3000 and 2000 cal BP. Wiggle-match dating was applied to bulk sediments to evaluate the possibility of constructing accurate chronologies in the absence of terrestrial plant macrofossils and when the amount of old carbon in the sediments is unknown. Facilitated by a floating varve chronology and relatively stable 14C reservoir ages, the results show the possibility to assess the contribution of old carbon solely based on the 14C wiggle-matching of bulk sediments. We confirm the wiggle-matched chronology and the 14C reservoir age of approximately 260 yr by cross-checking the results with 14C dating of macrofossils. The obtained calibrated ages based on bulk sediments have an uncertainty range of about 60–65 yr (95.4% confidence interval). This study confirms that 14C wiggle-match dating of bulk sediments is a viable tool when constructing high-resolution chronologies. The method is especially useful in Sun-climate studies since the timing between solar activity variations (expressed as 14C variations) and climate changes can be accurately determined.

Type
Radiocarbon Reservoir Effects
Copyright
Copyright © 2013 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andree, M, Oeschger, H, Siegenthaler, U, Riesen, T, Moell, M, Ammann, B, Tobolski, K. 1986. 14C dating of plant macrofossils in lake sediment. Radiocarbon 28(2A):411–6.Google Scholar
Barnekow, L, Possnert, G, Sandgren, P. 1998. AMS 14C chronologies of Holocene lake sediments in the Abisko area, northern Sweden – a comparison between dated bulk sediment and macrofossil samples. GFF 120(1):5967.Google Scholar
Björck, S, Wohlfarth, B. 2001. 14C chronostratigraphic techniques in paleolimnology. In: Last, WM, Smol, JP, editors. Tracking Environmental Change Using Lake Sediments. p 204–4.Google Scholar
Björck, S, Bennike, O, Possnert, G, Wohlfarth, B, Digerfeldt, G. 1998. A high-resolution 14C dated sediment sequence from southwest Sweden: age comparisons between different components of the sediment. Journal of Quaternary Science 13(1):85–9.Google Scholar
Blaauw, M, Christen, JA. 2005. Radiocarbon peat chronologies and environmental change. Applied Statistics 54(4):805–16.Google Scholar
Blaauw, M, Christen, JA. 2011. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Analysis 6(3):457–74.Google Scholar
Blaauw, M, Heuvelink, GBM, Mauquoy, D, van der Plicht, J, van Geel, B. 2003. A numerical approach to 14C wiggle-match dating of organic deposits: best fits and confidence intervals. Quaternary Science Reviews 22(14):1485–500.Google Scholar
Blaauw, M, van Geel, B, van der Plicht, J. 2004. Solar forcing of climatic change during the mid-Holocene: indications from raised bogs in the Netherlands. The Holocene 14(1):3544.Google Scholar
Blaauw, M, van Geel, B, Kristen, I, Plessen, B, Lyaruu, A, Engstrom, DR, van der Plicht, J, Verschuren, D. 2011. High-resolution 14C dating of a 25,000-year lake-sediment record from equatorial East Africa. Quaternary Science Reviews 30(21–22):3043–59.Google Scholar
Brauer, A, Haug, GH, Dulski, P, Sigman, DM, Negendank, JFW. 2008. An abrupt wind shift in western Europe at the onset of the Younger Dryas cold period. Nature Geoscience 1:520–3.Google Scholar
Bronk Ramsey, C. 1995. Radiocarbon calibration and analysis of stratigraphy: the OxCal program. Radiocarbon 37(2):425–30.Google Scholar
Bronk Ramsey, C. 2008. Deposition models for chronological records. Quaternary Science Reviews 27(1–2):4260.Google Scholar
Bronk Ramsey, C. 2009a. Bayesian analysis of radiocarbon dates. Radiocarbon 51(1):337–60.Google Scholar
Bronk Ramsey, C. 2009b. Dealing with outliers and offsets in radiocarbon dating. Radiocarbon 51(3):1023–45.Google Scholar
Bronk Ramsey, C, Dee, M, Lee, S, Nakagawa, T, Staff, RA. 2010. Developments in the calibration and modeling of radiocarbon dates. Radiocarbon 52(2–3):953–61.Google Scholar
Bronk Ramsey, C, Staff, RA, Bryant, CL, Brock, F, Kitagawa, H, van der Plicht, J, Schlolaut, G, Marshall, MH, Brauer, A, Lamb, HF, Payne, RL, Tarasov, PE, Haraguchi, T, Gotanda, K, Yonenobu, H, Yokoyama, Y, Tada, R, Nakagawa, T. 2012. A complete terrestrial radiocarbon record for 11.2 to 52.8 kyr B.P. Science 338(6105):370–4.Google Scholar
Chambers, FM, Mauquoy, D, Brain, SA, Blaauw, M, Daniell, JRG. 2007. Globally synchronous climate change 2800 years ago: proxy data from peat in South America. Earth and Planetary Science Letters 253(3–4):439–44.Google Scholar
Daniel, E. 2006. Jordartskartan 4C Halmstad NO. Sveriges geologiska undersökning K 58.Google Scholar
Deevey, ES, Gross, MS, Hutchinson, GE, Kraybill, HL. 1954. The natural C14 contents of materials from hardwater lakes. Proceedings of the National Academy of Sciences 40:285–8.Google Scholar
Guhrén, M, Bindler, R, Korsman, T, Rosén, P, Wallin, J-E, Renberg, I. 2003. Paleolimnologiska undersökningar av kalkade referenssjöar. Del. 4. Bösjön (Dalarnas län), Gyltigesjön (Hallands län) och Långsjön (Örebro län). Umeå: Institutionen för ekologi och geovetenskap, Umeå Universitet. p 37.Google Scholar
Hormes, A, Blaauw, M, Dahl, SO, Nesje, A, Possnert, G. 2009. Radiocarbon wiggle-match dating of proglacial lake sediments – implications for the 8.2 ka event. Quaternary Geochronology 4(4):267–77.Google Scholar
Karlén, W, Kuylenstierna, J. 1996. On solar forcing of Holocene climate: evidence from Scandinavia. The Holocene 6(3):359–65.Google Scholar
Karlqvist, L, de Geer, J, Fogdestam, B, Engqvist, P. 1985. Beskrivning och bilagor till hydrogeologiska kartan over Hallands län. Sveriges geologiska undersökning Ah 8.Google Scholar
Kilian, MR, van der Plicht, J, van Geel, B. 1995. Dating raised bogs: new aspects of AMS 14C wiggle matching, a reservoir effect and climatic change. Quaternary Science Reviews 14(10):959–66.Google Scholar
Knudsen, MF, Riisager, P, Donadini, F, Snowball, I, Muscheler, R, Korhonen, K, Pesonen, LJ. 2008. Variations in the geomagnetic dipole moment during the Holocene and the past 50 kyr. Earth and Planetary Science Letters 272(1–2):319–29.Google Scholar
Martin-Puertas, C, Matthes, K, Brauer, A, Muscheler, R, Hansen, F, Petrick, C, Aldahan, A, Possnert, G, van Geel, B. 2012. Regional atmospheric circulation shifts induced by a grand solar minimum. Nature Geoscience 5:397401.Google Scholar
Mauquoy, D, van Geel, B, Blaauw, M, van der Plicht, J. 2002. Evidence from northwest European bogs shows ‘Little Ice Age’ climatic changes driven by variations in solar activity. The Holocene 12(1):16.Google Scholar
Nilsson, A, Muscheler, R, Snowball, I. 2011. Millennial scale cyclicity in the geodynamo inferred from a dipole tilt reconstruction. Earth and Planetary Science Letters 311(3–4):299305.Google Scholar
Ojala, AEK, Alenius, T. 2005. 10 000 years of interannual sedimentation recorded in the Lake Nautajärvi (Finland) clastic–organic varves. Palaeogeography, Palaeoclimatology, Palaeoecology 219(3–4):285302.Google Scholar
Ojala, AEK, Saarinen, T, Salonen, V-P. 2000. Preconditions for the formation of annually laminated lake sediments in southern and central Finland. Boreal Environment Research 5:243–55.Google Scholar
Ojala, AEK, Francus, P, Zolitschka, B, Besonen, M, Lamoureux, SF. 2012. Characteristics of sedimentary varve chronologies – a review. Quaternary Science Reviews 43:4560.Google Scholar
Olsson, IU. 1986. Radiometric dating. In: Berglund, BE, editor. Handbook of Holocene Palaeoecology and Palaeohydrology. Chichester: John Wiley & Sons Ltd. p 273312.Google Scholar
Olsson, IU. 1991. Accuracy and precision in sediment chronology. Hydrobiologia 214:2534.Google Scholar
O'Sullivan, PE. 1983. Annually-laminated lake sediments and the study of Quaternary environmental changes – a review. Quaternary Science Reviews 1 (4):245313.Google Scholar
Pearson, GW. 1986. Precise calendrical dating of known growth-period samples using a ‘curve fitting’ technique. Radiocarbon 28(2A):292–9.Google Scholar
Petterson, G. 1996. Varved sediments in Sweden: a brief review. In: Kemp, AES, editor. Palaeoclimatology and Palaeoceanography from Laminated Sediments. Geological Society of London. p 73–7.Google Scholar
Petterson, G, Renberg, I, Geladi, P, Lindberg, A, Lindgren, F. 1993. Spatial uniformity of sediment accumulation in varved lake sediments in northern Sweden. Journal of Paleolimnology 9(3):195208.Google Scholar
Plunkett, G, Swindles, GT. 2008. Determining the Sun's influence on Lateglacial and Holocene climates: a focus on climate response to centennial-scale solar forcing at 2800 cal. BP. Quaternary Science Reviews 27(1–2):175–84.Google Scholar
Rasmussen, SO, Andersen, KK, Svensson, AM, Steffensen, JP, Vinther, BM, Clausen, HB, Siggaard-Andersen, M-L, Johnsen, SJ, Larsen, LB, Dahl-Jensen, D, Bigler, M, Röthlisberger, R, Fischer, H, Goto-Azuma, K, Hansson, ME, Ruth, U. 2006. A new Greenland ice core chronology for the last glacial termination. Journal of Geophysical Research 111: D06102, doi:10.1029/2005JD006079.Google Scholar
Reimer, PJ, Baillie, MGL, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Buck, CE, Burr, GS, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Hajdas, I, Heaton, TJ, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, McCormac, FG, Manning, SW, Reimer, RW, Richards, DA, Southon, JR, Talamo, S, Turney, CSM, van der Plicht, J, Weyhenmeyer, CE. 2009. Intcal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51(4):1111–50.Google Scholar
Renberg, I. 1982. Varved lake sediments: geochronological record of the Holocene. Geologiska Föreningens i Stockholm Förhandlingar 104:275–9.Google Scholar
Snowball, I, Sandgren, P. 2002. Geomagnetic field variations in northern Sweden during the Holocene quantified from varved lake sediments and their implications for cosmogenic nuclide production rates. The Holocene 12(5):517–30.Google Scholar
Snowball, I, Sandgren, P, Petterson, G. 1999. The mineral magnetic properties of an annually laminated Holocene lake-sediment sequence in northern Sweden. The Holocene 9(3):353–62.Google Scholar
Snowball, I, Zillén, L, Gaillard, M-J. 2002. Rapid early-Holocene environmental changes in northern Sweden based on studies of two varved lake-sediment sequences. The Holocene 12(1):716.Google Scholar
Snowball, I, Zillén, L, Ojala, A, Saarinen, T, Sandgren, P. 2007. FENNOSTACK and FENNORPIS: varve dated Holocene palaeomagnetic secular variation and relative palaeointensity stacks for Fennoscandia. Earth and Planetary Science Letters 255(1–2):106–16.Google Scholar
Snowball, I, Muscheler, R, Zillén, L, Sandgren, P, Stanton, T, Ljung, K. 2010. Radiocarbon wiggle matching of Swedish lake varves reveals asynchronous climate changes around the 8.2 kyr cold event. Boreas 39(4):720–33.Google Scholar
Speranza, A, van der Plicht, J, van Geel, B. 2000. Improving the time control of the Subboreal/Subatlantic transition in a Czech peat sequence by 14C wiggle-matching. Quaternary Science Reviews 19(16): 1589–604.Google Scholar
Stanton, T, Snowball, I, Zillén, L, Wastegård, S. 2010. Validating a Swedish varve chronology using radiocarbon, palaeomagnetic secular variation, lead pollution history and statistical correlation. Quaternary Geochronology 5(6):611–24.Google Scholar
Törnqvist, TE. 1992. Accurate dating of organic deposits by AMS 14C measurement of macrofossils. Radiocarbon 34(3):566–77.Google Scholar
Unkel, I. 2006. AMS-14C-Analysen zur Rekonstruktion der Landschafts- und Kulturgeschichte in der Region Palpa (S-Peru) [PhD dissertation]. Heidelberg: Ruprecht-Karls-Universität.Google Scholar
van Geel, B, Mook, WG. 1989. High-resolution 14C dating of organic deposits using natural atmospheric 14C variations. Radiocarbon 31(2):151–5.Google Scholar
van Geel, B, Buurman, J, Waterbolk, HT. 1996. Archaeological and palaeoecological indications of an abrupt climate change in the Netherlands, and evidence for climatological teleconnections around 2650 BP. Journal of Quaternary Science 11(6):451–60.Google Scholar
van Geel, B, van der Plicht, J, Kilian, MR, Klaver, ER, Kouwenberg, JHM, Renssen, H, Reynaud-Farrera, I, Waterbolk, HT. 1998. The sharp rise of 14C ca. 800 cal BC: possible causes, related climatic teleconnections and the impact on human environments. Radiocarbon 40(1):535–50.Google Scholar
van Geel, B, Raspopov, OM, Renssen, H, van der Plicht, J, Dergachev, VA, Meijer, HAJ. 1999. The role of solar forcing upon climate change. Quaternary Science Reviews 18(3):331–8.Google Scholar
Wacker, L, Christl, M, Synal, H-A. 2010. Bats: a new tool for AMS data reduction. Nuclear Instruments and Methods in Physics Research B 268(7–8):976–9.Google Scholar
Zillén, L, Snowball, I, Sandgren, P, Stanton, T. 2003. Occurrence of varved lake sediment sequences in Värmland, west central Sweden: lake characteristics, varve chronology and AMS radiocarbon dating. Boreas 32(4):612–26.Google Scholar