Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-11T02:53:34.991Z Has data issue: false hasContentIssue false

Radiocarbon Reservoir Ages in the Mediterranean Sea and Black Sea

Published online by Cambridge University Press:  18 July 2016

Giuseppe Siani
Affiliation:
Laboratoire des Sciences du Climat et de l'Environnement, Domaine du CNRS, Avenue de la Terrasse, F-91118 Gif sur Yvette, France
Martine Paterne*
Affiliation:
Laboratoire des Sciences du Climat et de l'Environnement, Domaine du CNRS, Avenue de la Terrasse, F-91118 Gif sur Yvette, France
Maurice Arnold
Affiliation:
Laboratoire des Sciences du Climat et de l'Environnement, Domaine du CNRS, Avenue de la Terrasse, F-91118 Gif sur Yvette, France
Edouard Bard
Affiliation:
CEREGE, Université Aix-Marseille III and CNRS UMR6536, Europôle de l'Arbois, BP 80, F-13545 Aix-en-Provence Cedex 4, France
Bernard Métivier
Affiliation:
Muséum National d'Histoire Naturelle, URA 699 – CNRS, 55 rue Buffon, 75005 Paris, France
Nadine Tisnerat
Affiliation:
Laboratoire des Sciences du Climat et de l'Environnement, Domaine du CNRS, Avenue de la Terrasse, F-91118 Gif sur Yvette, France
Franck Bassinot
Affiliation:
Laboratoire des Sciences du Climat et de l'Environnement, Domaine du CNRS, Avenue de la Terrasse, F-91118 Gif sur Yvette, France
*
Corresponding author. Email: Paterne@lsce.cnrs-gif.fr.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We measured apparent marine radiocarbon ages for the Mediterranean Sea, Black Sea, and Red Sea by accelerator mass spectrometry radiocarbon analyses of 26 modern, pre-bomb mollusk shells collected living between AD 1837 and 1950. The marine reservoir (R(t)) ages were estimated at some 390 ± 85 yr BP, 415 ± 90 yr BP and 440 ± 40 yr BP, respectively. R(t) ages in the Mediterranean Sea and Black Sea are comparable to those for the North Atlantic Ocean (<65°N), in accordance with the modern oceanic circulation pattern. The ΔR values of about 35 ± 70 yr and 75 ± 60 yr in the Mediterranean area show that the global box-diffusion carbon model, used to calculate R(t) ages, reproduces the measured marine 14C R(t) ages in these oceanic areas. Nevertheless, high values of standard deviations, larger than measurement uncertainties are obtained and express decadal R(t) changes. Such large standard deviations are indeed related to a decrease of the apparent marine ages of some 220 yr from 1900 AD to 1930 AD in both the Mediterranean Sea and the western North Atlantic Ocean.

Type
Articles
Copyright
Copyright © 2000 by the Arizona Board of Regents on behalf of the University of Arizona 

References

Arnold, M, Bard, E, Maurice, P, Duplessy, JC. 1987. 14C dating with the Gif-sur-Yvette Tandetron accelerator: status report. Nuclear Instruments and Methods in Physics Research Section B29:120–3.Google Scholar
Bard, E. 1988. Correction of accelerator mass spectrometry 14C ages measured in planktonic foraminifera: paleoceanographic implications. Paleoceanography 3:635–45.Google Scholar
Bard, E, Arnold, M, Mangerud, J, Paterne, M, Labeyrie, L, Duprat, J, Mélières, M, Sonstegaard, E, Duplessy, JC. 1994. The North Atlantic atmosphere-sea surface 14C gradient during the Younger Dryas climatic event. Earth and Planetary Science Letters 126:275–87.CrossRefGoogle Scholar
Berkman, PA, Forman, SL. 1996. Pre-bomb radiocarbon and reservoir correction for calcareous marine species in the Southern Ocean. Geophysical Research Letters 23:363–6.Google Scholar
Broecker, WS, Olson, EA. 1961. Lamont radiocarbon measurements VII. Radiocarbon 3:176204.CrossRefGoogle Scholar
Broecker, WS, Gerard, R. 1969. Natural radiocarbon in the Mediterranean Sea. Limnology and Oceanograpy 14:883–8.Google Scholar
Cember, RP. 1988. On the sources, formation, and circulation of Red Sea deep water. Journal of Geophysical Research 93(C7):8175–91.CrossRefGoogle Scholar
Delibrias, G. 1985 Carbone-14. In: Roth, E, Poty, B, editors. Méthodes de datation par les phénoménes nucléaires naturels. Applications. Masson : 423–58.Google Scholar
Domack, EW. 1992. Modern carbon-14 ages and reservoir corrections for the Antarctic Peninsula and Gerlache Strait area. Antarctic Journal of the United States 27:63–4.Google Scholar
Druffel, ERM. 1982. Banded Corals: Changes in oceanic carbon-14 during the Little Ice Age. Science 218:13–9.CrossRefGoogle ScholarPubMed
Druffel, ERM. 1997. Pulses of rapid ventilation in the North Atlantic Surface Ocean during the past century. Science 275:1454–7.Google Scholar
Dye, T. 1994. Apparent ages of marine shells: implications for archaeological dating in Hawai'i. Radiocarbon 36(1):51–7.CrossRefGoogle Scholar
Goodfriend, GA, Flessa, KW. 1997. Radiocarbon reservoir ages in the Gulf of California: roles of upwelling and flow from the Colorado River. Radiocarbon 39(2): 139–48.Google Scholar
Guilderson, PT, Schrag, P. 1998. Abrupt shift in subsurface temperatures in the Tropical Pacific associated with changes in El Niño. Science 281:240–3.CrossRefGoogle ScholarPubMed
Heier-Nielsen, S, Heinemeier, J, Nielsen, HL, Rud, N. 1995. Recent reservoir ages for Danish fjords and marine waters. Radiocarbon 37(3):875–82.Google Scholar
Hurrell, JW. 1995. Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science 269:676–9.CrossRefGoogle ScholarPubMed
Ingram, BL, Southon, JR. 1997. Reservoir ages in eastern pacific coastal and estuarine waters. Radiocarbon 38(3):573–82.Google Scholar
Kherici, N, Messadi, D. 1992. Importance des resources en eaux souterraines des massif dunaires méditerranéens du Maghreb. Géologie Méditerranéenne 2: 6976.Google Scholar
Jones, GA, Gagnon, AR. 1994. Radiocarbon chronology of Black Sea sediment. Deep Sea Research 41(3):531–57.Google Scholar
Mangerud, J. 1972. Radiocarbon dating of marine shells, including a discussion of apparent age of recent shell from Norway. Boreas 1:143–72.Google Scholar
Mangerud, J, Gulliksen, S. 1975. Apparent radiocarbon ages of recent marine shells from Norway, Spitzbergen, and Arctic Canada. Quaternary Research 5:263–73.Google Scholar
McFagden, B, Manning, MR. 1990. Calibrating New Zealand radiocarbon dates of marine shells. Radiocarbon 32(2):229–32.Google Scholar
Oeschger, H, Siegenthaler, U, Schotterer, U, Gugelmann, A. 1975. A box-diffusion model to study the carbon dioxide exchange in nature. Tellus 27:168–92.Google Scholar
Pelc, V. 1995. Approche méthodologique de la Chronométrie 14C de l'Holocène marin en Méditerranée, à partir des tests calcaires. Rapp. DEA Paléontologie, Dynamique sédimentaire et Chronologie. Univ. Lyon. Google Scholar
Robinson, SW, Thompson, G. 1981. Radiocarbon corrections for marine shell dates with application to southern Pacific Northwest Coast prehistory. Syesis 14:4557.Google Scholar
Stuiver, M, Polach, HA. 1977. Discussion: reporting of 14C data. Radiocarbon 19(3):355–63.CrossRefGoogle Scholar
Stuiver, M, Ostlund, HG. 1983. Geosecs Indian Ocean and Mediterranean radiocarbon. Radiocarbon 25(1):129.CrossRefGoogle Scholar
Stuiver, M, Braziunas, TF. 1993. Modeling atmospheric 14C ages of marine samples to 10,000 BC. In: Stuiver, M, Long, A, Kra, RS, editors. Calibration 1993. Radiocarbon 35(1):137–89.CrossRefGoogle Scholar
Stuiver, M, Becker, B. 1993. High-precision decadal calibration of the radiocarbon time scale, AD 1950–6000 BC. Radiocarbon 35(1):65.Google Scholar
Stuiver, M, Pearson, GW, Braziunas, TF. 1986. Radiocarbon age calibration of marine samples back to 9000 cal yr BP. In: Stuiver, M, Kra, RS, editors. Radiocarbon 28(2B): 9801021.Google Scholar
Taylor, RE, Berger, R. 1967. Radiocarbon content of marine shells from the Pacific coasts of Central and South America. Science 158:1180–2.Google Scholar