Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T21:12:28.328Z Has data issue: false hasContentIssue false

Paleodiet, Radiocarbon Chronology, and the Possibility of Freshwater Reservoir Effect for Preobrazhenka 6 Burial Ground, Western Siberia: Preliminary Results

Published online by Cambridge University Press:  23 February 2016

Z V Marchenko*
Affiliation:
Institute of Archaeology and Ethnography, Siberian Branch of the Russian Academy of Sciences, Ave. Lavrentiev 17, Novosibirsk 630090, Russia Novosibirsk State Universities, Ave. Pirogov 2, Novosibirsk 630090, Russia
L A Orlova
Affiliation:
Deceased. Formerly: Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, Ave. Koptyug 3, Novosibirsk 630090, Russia
V S Panov
Affiliation:
Institute of Archaeology and Ethnography, Siberian Branch of the Russian Academy of Sciences, Ave. Lavrentiev 17, Novosibirsk 630090, Russia
A V Zubova
Affiliation:
Institute of Archaeology and Ethnography, Siberian Branch of the Russian Academy of Sciences, Ave. Lavrentiev 17, Novosibirsk 630090, Russia Novosibirsk State Universities, Ave. Pirogov 2, Novosibirsk 630090, Russia
V I Molodin
Affiliation:
Institute of Archaeology and Ethnography, Siberian Branch of the Russian Academy of Sciences, Ave. Lavrentiev 17, Novosibirsk 630090, Russia
O A Pozdnyakova
Affiliation:
Institute of Archaeology and Ethnography, Siberian Branch of the Russian Academy of Sciences, Ave. Lavrentiev 17, Novosibirsk 630090, Russia
A E Grishin
Affiliation:
Institute of Archaeology and Ethnography, Siberian Branch of the Russian Academy of Sciences, Ave. Lavrentiev 17, Novosibirsk 630090, Russia
E A Uslamin
Affiliation:
Institute of Archaeology and Ethnography, Siberian Branch of the Russian Academy of Sciences, Ave. Lavrentiev 17, Novosibirsk 630090, Russia
*
2Corresponding author. Email: afrika_77@mail.ru.

Abstract

This article presents the results of radiocarbon dating and a chronology of the Preobrazhenka 6 site of the Odino culture (Baraba forest steppe, western Siberia). Currently available 14C data for the necropolis do not allow accurate determination of the presence or absence of reservoir effects, and as such, further research is needed. Accelerator mass spectrometry (AMS) 14C dating of paired samples of terrestrial faunal and fish remains from a Neolithic pit suggest the absence of a reservoir effect in fish bone collagen. Middle Bronze Age burials have therefore been estimated to date to the 23rd–20th centuries cal BC. Pits with fish remains are dated earlier than burials, to the 63rd–61st centuries cal BC. Stable isotope measurements of human bone collagen (high δ15N and low δ13C values) indicate diets based on C3 plants and fish. Apparently, the role of animal protein in the diet was not significant. Dental paleopathology analysis has confirmed the important role of wild plants in human diet. Neolithic fish bones are elevated in δ13C [–13.5‰, average mean (n = 4)]. They are significantly different from the associated values of fish from the Late Bronze Age settlement of Chicha 1 [–22.5‰, average mean (n = 10)], which is also located in the Baraba forest steppe. The difference in δ13C values in fish bones may be determined by the origin of the samples, being derived either from lakes or rivers.

Type
Articles
Copyright
Copyright © 2015 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Afanaseva, AO. 2011. Osobennosti zhiznedeyatelnosti naseleniya Krepostnogo gorodishchya v I-II vekakh novoi ery po dannym paleopatologii zubochelyustnogo apparata [Features of the population life of the Krepostnoe settlement in I – II centuries on palaeopathology data]. Vestnik Yuzhnogo Nauchnogo Tsentra RAN 7(4):7982. In Russian.Google Scholar
Ambrose, SH. 1991. Effects of diet, climate and physiology on nitrogen isotope abundances in terrestrial foodwebs. Journal of Archaeological Science 18(3):293317.CrossRefGoogle Scholar
Ambrose, SH, Norr, L. 1993. Experimental evidence for the relationship of the carbon isotope ratios of whole diet and dietary protein to those of bone collagen and carbonate. In: Lambert, JB, Grupe, G, editors. Prehistoric Human Bone: Archaeology at the Molecular Level. Berlin: Springer-Verlag. p 137.Google Scholar
Brock, F, Higham, T, Ditchfield, P, Bronk Ramsey, C. 2010. Current pretreatment methods for AMS radiocarbon dating at the Oxford Radiocarbon Accelerator Unit (ORAU). Radiocarbon 52(1):103–12.CrossRefGoogle Scholar
Bronk Ramsey, C. 1995. Radiocarbon calibration and analysis of stratigraphy: the OxCal program. Radiocarbon 37(2):425–30.CrossRefGoogle Scholar
Bronk Ramsey, C. 1998. Probability and dating. Radiocarbon 40(1):461–74.Google Scholar
Bronk Ramsey, C. 2001. Development of the radiocarbon calibration program. Radiocarbon 43(2A):355–63.CrossRefGoogle Scholar
Cherhykh, EN. 1970. Drevneishaya metallurgiya Urala i Povolzhya [Ancient metallurgy of Urals and Volga River Basin]. Materialy i Issledovaniya po Arkheologii SSSR 172180 p. In Russian.Google Scholar
Chernykh, EN. 1992. Ancient Metallurgy in the USSR: The Early Metal Age. Cambridge: Cambridge University Press. 335 p.Google Scholar
Epov, MI, Chemyakina, MA. 2009. Geophysical methods in the research of archaeological sites of Western Siberia and Altai: results and perspectives. Archeo-Sciences 33:271–4.Google Scholar
Görsdorf, J, Parzinger, H, Nagler, A. 2001. New radiocarbon dates of the North Asian steppe zone and its consequences for the chronology. Radiocarbon 43(2B):1115–20.CrossRefGoogle Scholar
Heaton, THE, Fogel, JC, von la Chevallerie, G, Collet, G. 1986. Climatic influence on the isotopic consumption of bone nitrogen. Nature 322(6082):822–3.CrossRefGoogle Scholar
Hedges, REM, Reynard, LM. 2007. Nitrogen isotopes and the trophic level of humans in archaeology. Journal of Archaeological Science 34(8):1240–51.CrossRefGoogle Scholar
Katzenberg, AM, Weber, A. 1999. Stable isotope ecology and palaeodiet in the Lake Baikal region of Siberia. Journal of Archaeological Science 26(6):651–9.CrossRefGoogle Scholar
Katzenberg, AM, Goriunova, O, Weber, A. 2009. Paleodiet reconstruction of Bronze Age Siberians from the mortuary site of Khuzhir-Nuge XIV, Lake Baikal. Journal of Archaeological Science 36(3):663–74.CrossRefGoogle Scholar
Keenleyside, A. 2008. Dental pathology and diet at Apollonia, a Greek colony on the Black Sea. International Journal of Osteoarchaeology 18(3):262–79.CrossRefGoogle Scholar
Kiryushin, YF, Grushin, SP, Tishkin, AA. 2003. Pogrebalnyi obryad naseleniya epokhi rannei bronzy Verkhnego Priob'ya (po materialam gruntovogo mogil'nika Teleutskii Vzvoz-1) [Burial rite practiced by Early Bronze Age population in the Upper Ob River basin (based on data resulted from the study of the Teleutsky Vzvoz 1 burial ground)]. Barnaul: ASU Publishing. 333 p. In Russian.Google Scholar
Kiryushin, YF, Grushin, SP, Papin, DV. 2009. Radiouglerodnaya khronologiya pamyatnikov epokhi rannego metalla Altaya [Radiocarbon chronology of Early Metal Age sites in Altai]. In: Kiryushin, YF, Tishkin, AA, editors. Rol' estestvenno-nauchnykh metodov v arkheologicheskikh issledovaniyakh. Barnaul: ASU Publishing. p 120–4. In Russian.Google Scholar
Kosarev, MF. 1981. Bronzovyi vek Zapadnoi Sibiri [Bronze Age in Western Siberia]. Moscow: Nauka Publishing. 278 p. In Russian.Google Scholar
Lee-Thorp, J, Sealy, J, van der Merwe, NJ. 1989. Stable carbon isotope ratio differences between bone collagen and bone apatite, and their relationship to diet. Journal of Archaeological Science 16(6):585–99.CrossRefGoogle Scholar
Lukacs, JR. 1989. Dental palaeopathology: methods for reconstructing dietary patterns. In: Reconstruction of Life from the Skeleton. New York: Alan Liss. p 261–86.Google Scholar
Machicek, ML, Zubova, AV. 2012. Dental wear patterns and subsistence activities in early nomadic pastoralist communities of the Central Asian steppes. Archaeology, Ethnology & Anthropology of Eurasia 40(3):149–57.CrossRefGoogle Scholar
Marchenko, ZV. 2009. Radiouglerodnaya khronologiya arkheologicheskikh pamyatnikov epokhi neolita i rannego metalla Barabinskoi lesostepi [Radiocarbon chronology of the Neolithic and Early Metal Age archaeological sites of the Baraba forest-steppe]. In: Kiryushin, YF, Tishkin, AA, editors. Rol' estestvenno-nauchnykh metodov v arkheologicheskikh issledovaniyakh. Barnaul: ASU Publishing. p 140–3. In Russian.Google Scholar
Matveev, AV. 1998. Pervye andronovtsy v lesakh Zaural'ya [Earliest Andronovo groups in the forests of the Trans-Urals]. Novosibirsk: Nauka, Sibirskoe predpriyatie RAN Publishing. 417 p. In Russian.Google Scholar
Matveev, AV, Anoshko, OM. 2009. Zaural'e posle andronovtsev: Barkhatovskaya ku'tura [The Trans-Urals in post-Andronovo period: the Barkhatovo culture]. Tyumen: Tyumenskii dom pechati Publishing. 416 p. In Russian.Google Scholar
Matyushchenko, VI. 1973. Drevnyaya istoriya naseleniya lesnogo i lesostepnogo Priobya (neolit i bronzovyi vek) [Ancient history of people inhabited the forest and forest-steppe areas of the Ob River basin (Neolithic Age, Bronze Age)]. Iz Istorii Sibiri. Vypusk 10, chast 2. Tomsk: TSU Publishing. 139 p. In Russian.Google Scholar
Molodin, VI. 2012. Pamyatnik Sopka 2 na reke Omi. Kul'turno-khronlogicheskii analiz pogrebal'nykh kompleksov odinovskoi kul'tury [The Sopka 2 site on the Om River. Cultural and chronological analysis of burial complexes associated with the Odino culture]. Tom 3. Novosibirsk: IAET SO RAN Publishing. 220 p. In Russian.Google Scholar
Molodin, VI, Chemyakina, MA, Dyadkov, PG, Sopheikov, OV, Mikheev, OA, Pozdnyakova, OA. 2004. Arkheologo-geophizicheskie issledovaniya pamyatnika Preobrazhenka 6 [Archaeological-geophysical researches on the Preobrazhenka 6 site]. In: Derevyanko, AP, Molodin, VI, editors. Problemy Arkheologii, Etnografii, Antropologii Sibiri i Sopredelnykh Territorii. Tom X, chast 1. Novosibirsk: IAET SO RAN Publishing. p 378–83. In Russian.Google Scholar
Molodin, VI, Chemyakina, MA, Pozdnyakova, OA. 2007. Arkheologo-geofizicheskie issledovaniya pamyatnika Preobrazhenka 6 v Barabinskoi lesostepi [Archaeo-geophysical studies carried out at the site of Preobrazhenka 6 in the Baraba forest-steppe]. In: Derevyanko, AP, Molodin, VI, editors. Problemy Arkheologii, Etnografii, Antropologii Sibiri i Sopredelnykh Territorii. Tom 13. Novosibirsk: IAET SO RAN Publishing. p 339–44. In Russian.Google Scholar
Molodin, VI, Koneva, LA, Chemyakina, MA, Stepanenko, DV, Pozdnyakova, OA. 2012a. Ichthyologic materials from ritual complexes of the Odino culture from the Preobrazhenka-6 site. Archaeology, Ethnology & Anthropology of Eurasia 50(2):2536.CrossRefGoogle Scholar
Molodin, VI, Marchenko, ZV, Kuzmin, YV, Grishin, AE, Van Strydonck, M, Orlova, LA. 2012b. 14C chronology of burial grounds of the Andronovo period (Middle Bronze Age) in Baraba forest steppe, western Siberia. Radiocarbon 54(3–4):737–47.CrossRefGoogle Scholar
Molodin, VI, Epimakhov, AV, Marchenko, ZV. 2014. Radiouglerodnaya khronologiya kultur epokhi bronzy Urala i yuga Zapadnoi Sibiri: printsipy i podkhody, dostizheniya i problemy [Radiocarbon chronology of the south Urals and the south of western Siberia cultures: principles and approaches, achievements and problems]. Vestnik Novosibirskogo Gosudarstvennogo Universiteta. Seriya: Istoriya, Philologiya 13(3):136–67. In Russian.Google Scholar
O'Connell, TC, Levine, MA, Hedges, REM. 2003. The importance of fish in diet of central Eurasian peoples from the Mesolithic to Iron Age. In: Levine, MA, Renfrew, AC, Boyle, K, editors. Prehistoric Steppe Adaptation and the Horse. Cambridge: McDonald Institute for Archaeological Research. p 253–68.Google Scholar
O'Connell, TC, Kneale, CJ, Tasevska, N, Kuhnle, GGC. 2012. The diet-body offset in human nitrogen isotopic values: a controlled dietary study. American Journal of Physical Anthropology 149(3):426–34CrossRefGoogle ScholarPubMed
Pate, FD. 1994. Bone chemistry and paleodiet. Journal of Archaeological Method and Theory 1(2):161209.CrossRefGoogle Scholar
Privat, K, Schneeweiss, J, Benecke, N, Vasil'ev, SK, O'Connell, T, Hedges, R, Craig, O. 2005. Economy and diet at the Late Bronze Age – Iron Age site of Chicha: artefactual, archaeozoological and biochemical analyses. Eurasia Antiqua 11:419–49.Google Scholar
Reimer, PJ, Bard, E, Bayliss, A, Warren Beck, J, Blackwell, PG, Bronk Ramsey, C, Buck, CE, Cheng, H, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP Haflidason, H, Hajdas, I, Hatté, C, Heaton, TJ, Hoffmann, DL, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, Manning, SW, Niu, M, Reimer, RW, Richards, DA, Scott, EM, Southon, JR, Staff, RA, Turney, CSM, van der Plicht, J. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0-50,000 years cal BP Radiocarbon 55(4):1869–87.CrossRefGoogle Scholar
Roberts, C, Manchester, K. 2005. The Archaeology of Disease. Stround: Sutton Publishing. 338 p.Google Scholar
Schoeninger, MJ, DeNiro, MJ. 1984. Nitrogen and carbon isotopic composition of bone collagen from marine and terrestrial animals. Geochimica et Cosmochimica Acta 48(4):625–39.CrossRefGoogle Scholar
Schneeweiss, J. 2007. Die Siedlung Ciča in der westsibirischen Waldsteppe I. Untersuchungen zur spätbronze- bis früheisenzeitlichen Keramik, Chronologie und kulturellen Stellung. Mainz: Philipp von Zabern Verlag. 422 p.Google Scholar
Shishlina, NI. 2014. Izotopnyi sostav azota i ugleroda kollagena kostei arkheologicheskikh zhivotnykh kak pokazatel klimaticheskikh izmeneii (na primere materialov lolinskoi kultury epokhi bronzovogo veka) [Isotope composition of nitrogen and carbon in collagen of archaeological animals' bones as an indicator of climatic changes (on the materials of Lola culture Bronze Age)]. In: Materialy mezhdunarodnoi nauchnoi konferentsii po arkheologicheskomy pochvovedeniu, posvyashchennoi pamyati VA Demkina. Pushchino: OOO “Foton-vek.” p 180–3. In Russian.Google Scholar
Shishlina, NI, Zazovskaya, EP, van der Plicht, J, Hedges, REM, Sevastyanov, VS, Chichagova, OA. 2009. Paleoecology, subsistence, and 14C chronology of the Eurasian Caspian steppe Bronze Age. Radiocarbon 51(2):481–99.CrossRefGoogle Scholar
Shishlina, N, Zazovskaya, E, van der Plicht, J, Sevastyanov, V. 2012. Isotopes, plants, and reservoir effects: case study from the Caspian steppe Bronze Age. Radiocarbon 54(3–4):749–60.CrossRefGoogle Scholar
Smith, BH. 1984. Patterns of molar wear in hunter-gatherers and agriculturalists. American Journal of Physical Anthropology 63(1):3956.CrossRefGoogle Scholar
Svyatko, SV. 2014. Dental palaeopathological analysis of the Eneolithic-Early Iron Age populations from the Minusinsk Basin, southern Siberia: palaeodietary implication. Archaeology, Ethnology and Anthropology of Eurasia 58(2):143–56.Google Scholar
Svyatko, SV, Mallory, JP, Murphy, EM, Polyakov, AV, Reimer, PJ, Schulting, RJ. 2009. New radiocarbon dates and a review of the chronology of prehistoric populations from the Minusinsk Basin, southern Siberia, Russia. Radiocarbon 51(1):243–73.CrossRefGoogle Scholar
Svyatko, SV, Schulting, RJ, Mallory, J, Murphy, EM, Reimer, PJ, Khartanovich, VI, Chistov, YK, Sablin, MV. 2013. Stable isotope dietary analysis of prehistoric populations from the Minusinsk Basin, Southern Siberia, Russia: a new chronological framework for the introduction of millet to the eastern Eurasian steppe. Journal of Archaeological Science 40(11):3936–45.CrossRefGoogle Scholar
van der Plicht, J, Molodin, VI, Kuzmin, YV, Vasiliev, SK, Postnov, AV, Slavinsky, VS. 2015. New Holocene refugia of giant deer (Megaloceros giganteus Blum.) in Siberia: updated extinction patterns. Quaternary Science Reviews 114:182–8.CrossRefGoogle Scholar
van Klinken, GV. 1999. Bone collagen quality indicators for palaeodietary and radiocarbon measurements. Journal of Archaeological Science 26(6):687–95.CrossRefGoogle Scholar
Ventresca Miller, A, Usmanova, E, Logvin, V, Kalieva, S, Shevnina, I, Logvin, A, Kolbina, A, Suslov, A, Privat, K, Haas, K, Rosenmeier, M. 2014a. Subsistence and social change in central Eurasia: stable isotope analysis of populations spanning the Bronze Age transition. Journal of Archaeological Science 42:525–38.CrossRefGoogle Scholar
Ventresca Miller, A, Usmanova, E, Logvin, V, Kalieva, S, Shevnina, I, Logvin, A, Kolbina, A, Suslov, A. 2014b. Dental health, diet, and social transformations in the Bronze Age: comparative analysis of pastoral populations in northern Kazakhstan. Quaternary International 348:130–46.CrossRefGoogle Scholar
Weber, AW, Beukens, RR, Bazaliiskii, VI, Goriunova, OI, Savel'ev, NA. 2006. Radiocarbon dates from Neolithic and Bronze Age hunter-gatherer cemeteries in Cis-Baikal region of Siberia. Radiocarbon 48(1):127–66.CrossRefGoogle Scholar