Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-25T18:10:13.910Z Has data issue: false hasContentIssue false

The New Zealand Kauri (Agathis Australis) Research Project: A Radiocarbon Dating Intercomparison of Younger Dryas Wood and Implications for IntCal13

Published online by Cambridge University Press:  09 February 2016

Alan Hogg*
Affiliation:
Radiocarbon Laboratory, University of Waikato, PB 3105, Hamilton 3240, New Zealand
Chris Turney
Affiliation:
ARC Laureate Fellow, Climate Change Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
Jonathan Palmer
Affiliation:
Geography, CLES, University of Exeter, Exeter, Devon EX4 4RJ, United Kingdom Gondwana Tree-Ring Laboratory, P.O. Box 14, Little River, Canterbury 7546, New Zealand
John Southon
Affiliation:
Keck-CCAMS Group, Earth System Science Dept., University of California, Irvine, B321 Croul Hall, Irvine, California 92697, USA
Bernd Kromer
Affiliation:
Heidelberg Academy of Sciences, University of Heidelberg, Germany
Christopher Bronk Ramsey
Affiliation:
Oxford Radiocarbon Accelerator Unit, University of Oxford, Dyson Perrins Building, South Parks Rd., Oxford OX1 3QY, United Kingdom
Gretel Boswijk
Affiliation:
Tree-Ring Laboratory, School of Environment, University of Auckland, PB 92019, Auckland, New Zealand
Pavla Fenwick
Affiliation:
Gondwana Tree-Ring Laboratory, P.O. Box 14, Little River, Canterbury 7546, New Zealand
Alexandra Noronha
Affiliation:
Keck-CCAMS Group, Earth System Science Dept., University of California, Irvine, B321 Croul Hall, Irvine, California 92697, USA
Richard Staff
Affiliation:
Oxford Radiocarbon Accelerator Unit, University of Oxford, Dyson Perrins Building, South Parks Rd., Oxford OX1 3QY, United Kingdom
Michael Friedrich
Affiliation:
Hohenheim University, Institute of Botany (210), Garbenstrasse 30, D-70593 Stuttgart, Germany
Linda Reynard
Affiliation:
Oxford Radiocarbon Accelerator Unit, University of Oxford, Dyson Perrins Building, South Parks Rd., Oxford OX1 3QY, United Kingdom Human Evolutionary Biology, Harvard University, 11 Divinity Avenue, Cambridge, Massachusetts 02138, USA
Dominik Guetter
Affiliation:
Laboratory of Ion Beam Physics, ETH Zurich, Schafmattstrasse 20, CH-8093 Zurich, Switzerland
Lukas Wacker
Affiliation:
Laboratory of Ion Beam Physics, ETH Zurich, Schafmattstrasse 20, CH-8093 Zurich, Switzerland
Richard Jones
Affiliation:
Geography, CLES, University of Exeter, Exeter, Devon EX4 4RJ, United Kingdom
*
Corresponding author. Email: alan.hogg@waikato.ac.nz.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Wc describe here the New Zealand kauri (Agathis australis) Younger Dryas (YD) research project, which aims to undertake Δ14C analysis of ∼140 decadal floating wood samples spanning the time interval ∼13.1–11.7 kyr cal BP. We report 14C intercomparison measurements being undertaken by the carbon dating laboratories at University of Waikato (Wk), University of California at Irvine (UCI), and University of Oxford (OxA). The Wk, UCI, and OxA laboratories show very good agreement with an interlaboratory comparison of 12 successive decadal kauri samples (average offsets from consensus values of –7 to +4 14C yr). A University of Waikato/University of Heidelberg (HD) intercomparison involving measurement of the YD-age Swiss larch tree Ollon505, shows a HD/Wk offset of ∼10–20 14C yr (HD younger), and strong evidence that the positioning of the Ollon505 series is incorrect, with a recommendation that the 14C analyses be removed from the IntCal calibration database.

Type
Research Article
Copyright
Copyright © 2013 by the Arizona Board of Regents on behalf of the University of Arizona 

References

Blockley, SPE, Lane, CS, Hardiman, M, Rasmussen, SO, Seierstad, IK, Steffensen, JP, Svensson, A, Lotter, AF, Turney, CS, Bronk Ramsey, C, INTIMATE members. 2012. Synchronisation of palaeoenvironmental records over the last 60,000 years, and an extended INTIMATE event stratigraphy to 48,000 b2k. Quaternary Science Reviews 36:210.CrossRefGoogle Scholar
Boswijk, G, Fowler, A, Lorrey, A, Palmer, J, Ogden, J. 2006. Extension of the New Zealand kauri (Agathis australis) chronology to 1724 BC. The Holocene 16(2):188–99.Google Scholar
Brock, F, Higham, TFG, Ditchfield, P, Bronk Ramsey, C. 2010. Current pretreatment methods for AMS radiocarbon dating at the Oxford Radiocarbon Accelerator Unit (ORAU). Radiocarbon 52(1):103–12.Google Scholar
Bronk Ramsey, C, Higham, T, Leach, P. 2004. Towards high-precision AMS: progress and limitations. Radiocarbon 46(1):1724.Google Scholar
Buckley, B, Ogden, J, Palmer, J, Fowler, J, Salinger, J. 2000. Dendroclimatic interpretation of tree-rings in Agathis australis (kauri). 1. Climate correlation functions and master chronology. Journal of the Royal Society of New Zealand 30:263–75.Google Scholar
Fowler, A, Palmer, J, Salinger, J, Ogden, J. 2000. Dendroclimatic interpretation of tree-rings in Agathis australis (kauri): 2. Evidence of a significant relationship with ENSO. Journal of the Royal Society of New Zealand 30:277–92.Google Scholar
Fowler, A, Boswijk, G, Lorrey, AM, Gergis, J, Pirie, M, McCloskey, SPJ, Palmer, JG, Wunder, J. 2012. Multi-centennial tree-ring record of ENSO-related activity in New Zealand. Nature Climate Change 2(3):172–6.Google Scholar
Friedrich, M, Remmele, S, Kromer, B, Hofmann, J, Spurk, M, Kaiser, KF, Orcel, C, Küppers, M. 2004. The 12,460-year Hohenheim oak and pine tree-ring chronology from central Europe—a unique annual record for radiocarbon calibration and paleoenvironment reconstructions. Radiocarbon 46(3):1111–22.Google Scholar
Hogg, AG. 1993. Performance and design of 0.3 ml to 10 ml synthetic silica liquid scintillation vials. In: Noakes, JE, Polach, HA, Schönhofer, F, editors. Liquid Scintillation Spectrometry 1992. Tucson: Radiocarbon, p 135–42.Google Scholar
Hogg, AG, Fifield, LK, Turney, CSM, Palmer, JG, Galbraith, R, Baillie, MGL. 2006. Dating ancient wood by high sensitivity liquid scintillation counting and accelerator mass spectrometry – pushing the boundaries. Quaternary Geochronology l(4):241–8.Google Scholar
Hogg, AG, Fifield, LK, Palmer, JG, Turney, CSM, Galbraith, R. 2007. Robust radiocarbon dating of wood samples by high-sensitivity liquid scintillation spectroscopy in the 50–70 kyr age range. Radiocarbon 49(2):379–91.Google Scholar
Hogg, A, Palmer, J, Boswijk, G, Turney, C. 2011. High-precision radiocarbon measurements of tree-ring dated wood from New Zealand: 195 BC–AD 995. Radiocarbon 53(3):529–42.Google Scholar
Hoper, ST, McCormac, FG, Hogg, AG, Higham, TFG, Head, MJ. 1998. Evaluation of wood pretreatments on oak and cedar. Radiocarbon 40(1):4550.Google Scholar
Hua, Q, Barbetti, M, Fink, D, Kaiser, K, Friedrich, M, Kromer, B, Levchenko, V, Zoppi, U, Smith, A, Bertuch, F. 2009. Atmospheric 14C variations derived from tree rings during the early Younger Dryas. Quaternary Science Reviews 28(25–26):2982–90.Google Scholar
Kaiser, KF. 1993. Beiträge zur Klimageschichte vom Hochglazial bis ins frühe Holozän, rekonstruiert mit Jahrringen und Molluskenschalen aus verschiedenen Vereisungsgebieten. Winterthur: Ziegler Druck- und Verlags-AG. 203 p.Google Scholar
Kaiser, KF, Friedrich, M, Miramont, C, Kromer, B, Sgier, M, Schaub, M, Boeren, I, Remmele, S, Talamo, S, Guibal, F, Sivan, O. 2012. Challenging process to make the Late-glacial tree-ring chronologies from Europe absolute—an inventory. Quaternary Science Reviews 36:7890.Google Scholar
Kromer, B, Friedrich, M, Hughen, KA, Kaiser, KF, Remmele, S, Schaub, M, Talamo, S. 2004. Lateglacial 14C ages from a floating, 1382–ring pine chronology. Radiocarbon 46(3):1203–9.Google Scholar
Ogden, J, Wilson, A, Hendy, C, Newnham, RM, Hogg, A. 1992. The late Quaternary history of kauri Agathis australis in New Zealand and its climatic significance. Journal of Biogeography 19:611–22.Google Scholar
Palmer, J, Lorrey, A, Turney, CSM, Hogg, AG, Ogden, J. 2006. Extension of New Zealand kauri (Agathis australis) tree-ring chronologies into Oxygen Isotope Stage (OIS) 3. Journal of Quaternary Science 21(7):779–87.Google Scholar
Reimer, PJ, Baillie, MGL, Bard, E, Bayliss, A, Beck, JW, Bertrand, CJH, Blackwell, PG, Buck, CE, Burr, GS, Cutler, KB, Damon, PE, Edwards, RL, Fairbanks, RG, Friedrich, M, Guilderson, TP, Hogg, AG, Hughen, KA, Kromer, B, McCormac, G, Manning, S, Bronk Ramsey, C, Reimer, RW, Remmele, S, Southon, JR, Stuiver, M, Talamo, S, Taylor, FW, van der Plicht, J, Weyhenmeyer, CE. 2004. IntCal04 terrestrial radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46(3):1029–58.Google Scholar
Reimer, PJ, Baillie, MGL, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Buck, CE, Burr, GS, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Hajdas, I, Heaton, TJ, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, McCormac, FG, Manning, SW, Reimer, RW, Richards, DA, Southon, JR, Talamo, S, Turney, CSM, van der Plicht, J, Weyhenmeyer, CE. 2009. IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51(4):1111–50.Google Scholar
Reimer, PJ, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Buck, CE, Cheng, H, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Haflidason, H, Hajdas, I, Hatté, C, Heaton, TJ, Hoffman, DL, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, Manning, SW, Niu, M, Reimer, RW, Richards, DA, Scott, EM, Southon, JR, Staff, RA, Turney, CSM, van der Plicht, J. 2013. IntCal13 and Marine 13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4), this issue.Google Scholar
Rozanski, K, Stichler, W, Gonfiantini, R, Scott, EM, Beukens, RP, Kromer, B, van der Plicht, J. 1992. The IAEA 14C Intercomparison Exercise 1990. Radiocarbon 34(3):506–19.Google Scholar
Stuiver, M, Polach, H. 1977. Discussion: reporting of 14C data. Radiocarbon 19(3):355–63.Google Scholar
Turney, CSM, Fifield, LK, Palmer, JG, Hogg, AG, Baillie, MGL, Galbraith, R, Ogden, J, Lorrey, A, Tims, SG. 2007. Towards a radiocarbon calibration for Oxygen Isotope Stage 3 using New Zealand kauri (Agathis australis). Radiocarbon 49(2):447–57.Google Scholar
Turney, C, Fifield, K, Hogg, A, Palmer, J, Hughen, K, Baillie, M, Galbraith, R, Ogden, J, Lorrey, A, Tims, S, Jones, R. 2010. The potential of New Zealand kauri (Agathis australis) for testing the synchronicity of abrupt climate change during the Last Glacial Interval (60,000–11,700 years ago). Quaternary Science Reviews 29(27–28):3677–82.Google Scholar
Walker, M, Johnsen, S, Rasmussen, SO, Popp, T, Steffensen, JP, Gibbard, P, Hoek, W, Lowe, J, Andrews, J, Bjorck, S, Cwynar, LC, Hughen, K, Kershaw, P, Kromer, B, Litt, T, Lowe, DJ, Nakagawa, T, Newnham, R, Schwander, J. 2009. Formal definition and dating of the GSSP (Global Stratotype Section and Point) for the base of the Holocene using the Greenland NGRIP ice core, and selected auxiliary records. Journal of Quaternary Science 24(1):317.Google Scholar
Wigley, TML, Briffa, KR, Jones, PD. 1984. On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. Journal of Climate and Applied Meteorology 23:201–13.Google Scholar
Xu, X, Khosh, M, Druffel-Rodriguez, K, Trumbore, S, Southon, J. 2010. Is the consensus value of ANU sucrose (IAEA C-6) too high? Radiocarbon 52(2–3):866–74.Google Scholar