Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T10:58:15.009Z Has data issue: false hasContentIssue false

Investigating the Local Reservoir Age and Stable Isotopes of Shells from Southeast Arabia

Published online by Cambridge University Press:  13 September 2016

Susanne Lindauer*
Affiliation:
Curt-Engelhorn-Zentrum Archaeometry gGmbH, Klaus-Tschira-Archaeometry-Centre, C4, 8, 68159 Mannheim, Germany Institute of Applied Geosciences, Technical University Darmstadt, Schnittspahnstr. 9, 64287 Darmstadt, Germany
Soraya Marali
Affiliation:
Institute of Geosciences, University of Mainz, Joh.-J.-Becherweg 21, 55128 Mainz, Germany
Bernd R Schöne
Affiliation:
Institute of Geosciences, University of Mainz, Joh.-J.-Becherweg 21, 55128 Mainz, Germany
Hans-Peter Uerpmann
Affiliation:
Center for Scientific Archaeology, Eberhard-Karls-University Tübingen, Rümelinstraße 23, 72070 Tübingen, Germany
Bernd Kromer
Affiliation:
Curt-Engelhorn-Zentrum Archaeometry gGmbH, Klaus-Tschira-Archaeometry-Centre, C4, 8, 68159 Mannheim, Germany
Matthias Hinderer
Affiliation:
Institute of Applied Geosciences, Technical University Darmstadt, Schnittspahnstr. 9, 64287 Darmstadt, Germany
*
*Corresponding author. Email: Susanne.lindauer@cez-archaeometrie.de.

Abstract

We recently started a systematic approach to determine the reservoir age in southeast Arabia and its dependence on mollusk species and their environment. This part of the study concentrates on local reservoir age and stable isotopes of the lagoonal species Terebralia palustris and Anadara uropigimelana at Khor Kalba, Oman Sea. Environmental and nutritive influences on mollusks are reflected in the radiocarbon and stable isotope signal. We found a local reservoir age of A. uropigimelana of about 940 yr and that of T. palustris as 800 yr. Sclerochronological analyses yielded information about seasonality of growth and death in A. uropigimelana. The modern shell of Periglypta reticulata shares food resources and habitat with Anadara sp., of which we did not find a modern specimen. It provided information on response to changes in temperature in the lagoonal system needed for suitability as reflecting climatic conditions. We were interested in carbon pathways of the mangrove in Kalba and a mangrove planted anew on a former mangrove sediment in Ajman. Being an obvious source of charcoal and food of T. palustris makes this information necessary. Further analyses will be performed to interpret changes in reservoir age in complex lagoonal systems as reaction to environmental variability.

Type
14C as a Tracer of Past or Present Ocean Circulation
Copyright
© 2016 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Selected Papers from the 2015 Radiocarbon Conference, Dakar, Senegal, 16–20 November 2015

References

REFERENCES

Armitage, SJ, Jasim, SA, Marks, AE, Parker, AG, Usik, VI, Uerpmann, H-P. 2011. The southern route ‘out of Africa’: evidence for an early expansion of modern humans into Arabia. Science 331(6016):453456.CrossRefGoogle ScholarPubMed
Azzoug, M, Carré, M, Schauer, AJ. 2012. Reconstructing the duration of the West African Monsoon season from growth patterns and isotopic signals of shells of Anadara senilis (Saloum Delta, Senegal). Palaeogeography, Palaeoclimatology, Palaeoecology 346–347:145152.CrossRefGoogle Scholar
Berger, JF, Cleuziou, S, Davtian, G, Cattani, M, Cavulli, F, Charpentier, V, Cremaschi, M, Giraud, J, Marquis, P, Martin, C, Méry, S, Plaziat, JC, Saliège, JF. 2005. Évolution paléogéographique du Ja’alan (Oman) à l’Holocène moyen: impact sur l'évolution des paléomilieux littoraux et les stratégies d’adaptation des communautés humaines. Paléorient 31(1):4663.CrossRefGoogle Scholar
Berger, JF, Charpentier, V, Crassard, R, Martin, C, Davtian, G, López-Sáez, JA. 2013. The dynamics of mangrove ecosystems, changes in sea level and the strategies of Neolithic settlements along the coast of Oman (6000–3000 cal. BC). Journal of Archaeological Science 40:30873104.CrossRefGoogle Scholar
Bieler, R, Kappner, I, Mikkelsen, PM. 2004. Periglypta listeri (J. E. Gray, 1838) (Bivalvia: Veneridae) in the western Atlantic: taxonomy, anatomy, life habits and distribution. Malacologia 46(2):427458.Google Scholar
Culleton, BJ, Kennett, DJ, Ingram, BL, Erlandson, JM, Southon, JR. 2006. Intrashell radiocarbon variability in marine mollusks. Radiocarbon 48(3):387400.CrossRefGoogle Scholar
Debenay, JP, Tack, DL, Ba, M, Sy, I. 1994. Environmental conditions, growth and production of Anadara senilis (Linnaeus, 1758) in a Senegal Lagoon. Journal of Molluscan Studies 60(2):113121.CrossRefGoogle Scholar
Dutta, K. 2008. Marine 14C reservoir age and Suess effect in the Indian Ocean. Journal of Earth Science India I(III):175188.Google Scholar
Evans, JW. 1972. Tidal growth increments in the cockle Clinocardium nuttallii . Science 176(4033):416417.CrossRefGoogle Scholar
Füllenbach, CS, Schöne, BR, Mertz-Kraus, R. 2015. Strontium/lithium ratio in aragonitic shells of Cerastoderma edule (Bivalvia) — a new potential temperature proxy for brackish environments. Chemical Geology 417:341355.CrossRefGoogle Scholar
Grossman, EL, Ku, T-L. 1986. Oxygen and carbon isotope fractionation in biogenic aragonite: temperature effects. Chemical Geology: Isotope Geoscience 59:5974.CrossRefGoogle Scholar
Hallmann, N, Burchell, M, Schöne, BR, Irvine, GV, Maxwell, D. 2009. High-resolution sclerochronological analysis of the bivalve mollusk Saxidomus gigantea from Alaska and British Columbia: techniques for revealing environmental archives and archaeological seasonality. Journal of Archaeological Science 36(10):23532364.CrossRefGoogle Scholar
House, MR, Farrow, GE. 1968. Daily growth banding in the shell of the cockle, Cardium edule . Nature 219(5161):13841386.CrossRefGoogle ScholarPubMed
Jones, DS, Arthur, MA, Allard, DJ. 1989. Sclerochronological records of temperature and growth from shells of Mercenaria mercenaria from Narragansett Bay, Rhode Island. Marine Biology 102:225234.CrossRefGoogle Scholar
Khim, B-K, Krantz, DE, Cooper, LW, Grebmeier, JM. 2003. Seasonal discharge of estuarine freshwater to the western Chukchi Sea shelf identified in stable isotope profiles of mollusk shells. Journal of Geophysical Research: Oceans 108(C9):3300.CrossRefGoogle Scholar
Kromer, B, Lindauer, S, Synal, H-A, Wacker, L. 2013. MAMS - a new AMS facility at the Curt-Engelhorn-Centre for Achaeometry, Mannheim, Germany. Nuclear Instruments and Methods in Physics Research B 294:1113.CrossRefGoogle Scholar
Lindauer, S, Kromer, B. 2013. Carbonate sample preparation for 14C dating using an elemental analyzer. Radiocarbon 55(2–3):364372.CrossRefGoogle Scholar
Marali, S, Schöne, BR. 2015. Oceanographic control on shell growth of Arctica islandica (Bivalvia) in surface waters of Northeast Iceland — implications for paleoclimate reconstructions. Palaeogeography, Palaeoclimatology, Palaeoecology 420:138149.CrossRefGoogle Scholar
Milano, S, Schöne, BR, Witbaard, R. 2015. Changes of shell microstructural characteristics of Cerastoderma edule (Bivalvia) — a novel proxy for water temperature. Palaeogeography, Palaeoclimatology, Palaeoecology. doi:10.1016/j.palaeo.2015.09.051.Google Scholar
Ohno, T. 1989. Palaeotidal characteristics determined by micro-growth patterns in bivalves. Palaeontology 32(2):217263.Google Scholar
Pape, E, Muthumbi, A, Kamanu, CP, Vanreusel, A. 2008. Size-dependent distribution and feeding habits of Terebralia palustris in mangrove habitats of Gazi Bay, Kenya. Estuarine, Coastal and Shelf Science 76(4):797808.CrossRefGoogle Scholar
Patel, B, Patel, S, Balani, MC, Pawar, S. 1978. Flux of certain radionuclides in the blood-clam Anadara granosa Linneaus under environmental conditions. Journal of Experimental Marine Biology and Ecology 35(2):177195.CrossRefGoogle Scholar
Petchey, F, Clark, G. 2011. Tongatapu hardwater: investigation into the 14C marine reservoir offset in lagoon, reef and open ocean environments of a limestone island. Quaternary Geochronology 6(6):539549.CrossRefGoogle Scholar
Petchey, F, Ulm, S, David, B, McNiven, I, Asmussen, B, Tomkins, H, Dolby, N, Aplin, K, Richards, T, Rowe, C, Leavesley, M, Mandui, H. 2013. High-resolution radiocarbon dating of marine materials in archaeological contexts: radiocarbon marine reservoir variability between Anadara, Gafrarium, Batissa, Polymesoda spp. and Echinoidea at Caution Bay, Southern Coastal Papua New Guinea. Archaeological and Anthropological Sciences 5(1):6980.CrossRefGoogle Scholar
Phillips, CS, Mosseri-Marlio, CE. 2002. Sustaining change: the emerging picture of the Neolithic to Iron Age subsistence economy at Kalba, Sharjah Emirate, UAE. Fifth International Symposium on the Archaeozoology of Southwestern Asia and Adjacent areas, Amman, Jordan. Groningen: ARC-Publicaties.Google Scholar
Rodelli, MR, Gearing, JN, Gearing, PJ, Marshall, N, Sasekumar, A. 1984. Stable isotope ratio as a tracer of mangrove carbon in Malaysian ecosystems. Oecologia 61(3):326333.CrossRefGoogle ScholarPubMed
Rollins, HB, Sandweiss, DH, Rollins, JC. 1990. Mollusks and coastal archaeology; a review. In: Decade of North American Geology, Centennial Special Volume 4 “Archaeological Geology of North America. Denver: Geological Society of America. p 467478.Google Scholar
Schöne, BR. 2008. The curse of physiology – challenges and opportunities in the interpretation of geochemical data from mollusk shells. Geo-Marine Letters 28(5):269285.CrossRefGoogle Scholar
Schöne, BR, Surge, DM. 2012. Bivalve Sclerochronology and Geochemistry. Part N (Revised), Volume 1 Mollusca 6 Bivalvia. Lawrence: Paleontological Institute University of Kansas. p 124.Google Scholar
Schöne, BR, Dunca, E, Fiebig, J, Pfeiffer, M. 2005a. Mutvei’s solution: an ideal agent for resolving microgrowth structures of biogenic carbonates. Palaeogeography, Palaeoclimatology, Palaeoecology 228(1–2):149166.CrossRefGoogle Scholar
Schöne, BR, Fiebig, J, Pfeiffer, M, Gleβ, R, Hickson, J, Johnson, ALA, Dreyer, W, Oschmann, W. 2005b. Climate records from a bivalved Methuselah (Arctica islandica, Mollusca; Iceland). Palaeogeography, Palaeoclimatology, Palaeoecology 228(1–2):130148.CrossRefGoogle Scholar
Schöne, BR, Wanamaker, AD Jr, Fiebig, J, Thébault, J, Kreutz, K. 2011. Annually resolved δ13C shell chronologies of long-lived bivalve mollusks (Arctica islandica) reveal oceanic carbon dynamics in the temperate North Atlantic during recent centuries. Palaeogeography, Palaeoclimatology, Palaeoecology 302(1–2):3142.CrossRefGoogle Scholar
Soulet, G. 2015. Methods and codes for reservoir–atmosphere 14C age offset calculations. Quaternary Geochronology 29:97103.CrossRefGoogle Scholar
Southon, J, Kashgarian, M, Fontugne, M, Metivier, B, Yim, WW-S. 2002. Marine reservoir corrections for the Indian Ocean and Southeast Asia. Radiocarbon 44(1):167180.CrossRefGoogle Scholar
Tebano, T, Paulay, G. 2000. Variable recruitment and changing environments create a fluctuating resource: the biology of Andara uropigimelana (Bivalvia: Arcidae) on Tarawa Atoll. Atoll Research Bulletin 488:115.CrossRefGoogle Scholar
von Bertalanffy, L. 1938. A quantitative theory of organic growth (inquiries on growth laws. II). Human Biology 10:181213.Google Scholar
Wacker, L, Fülöp, RH, Hajdas, I, Molnár, M, Rethemeyer, J. 2013. A novel approach to process carbonate samples for radiocarbon measurements with helium carrier gas. Nuclear Instruments and Methods in Physics Research B 294:214217.CrossRefGoogle Scholar
Wanamaker, AD Jr, Kreutz, KJ, Schöne, BR, Introne, DS. 2011. Gulf of Maine shells reveal changes in seawater temperature seasonality during the Medieval Climate Anomaly and the Little Ice Age. Palaeogeography, Palaeoclimatology, Palaeoecology 302(1–2):4351.CrossRefGoogle Scholar
Zazzo, A. 2014. Bone and enamel carbonate diagenesis: a radiocarbon prospective. Palaeogeography, Palaeoclimatology, Palaeoecology 416:168178.CrossRefGoogle Scholar
Zazzo, A, Munoz, O, Saliége, J-F, Moreau, C. 2012. Variability in the marine radiocarbon reservoir effect in Muscat (Sultanate of Oman) during the 4th millennium BC: reflection of taphonomy or environment? Journal of Archaeological Science 39(7):25592567.CrossRefGoogle Scholar
Zazzo, A, Lebon, M, Chiotti, L, Comby, C, Delqué-Kolic, E, Nespoulet, R, Reiche, I. 2013. Can we use calcined bones for radiocarbon dating the Paleolithic? Radiocarbon 55(2–3):14091421.CrossRefGoogle Scholar
Zazzo, A, Munoz, O, Badel, E, Béguier, I, Genchi, F, Marcucci, LG. 2016. A revised radiocarbon chronology of the aceramic shell midden of Ra’s Al-Hamra 6 (Muscat, Sultanate of Oman): implication for occupational sequence, marine reservoir age, and human mobility. Radiocarbon 58(2):383395.CrossRefGoogle Scholar