Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T13:56:04.376Z Has data issue: false hasContentIssue false

High-Resolution Dating of a Medieval Multiple Grave

Published online by Cambridge University Press:  05 June 2018

Helene Agerskov Rose*
Affiliation:
Center for Baltic and Scandinavian Archaeology, Stiftung Schleswig-Holsteinische Landesmuseen, Schlossinsel 1, Schloss Gottorf, D-24837 Schleswig, Germany
John Meadows
Affiliation:
Center for Baltic and Scandinavian Archaeology, Stiftung Schleswig-Holsteinische Landesmuseen, Schlossinsel 1, Schloss Gottorf, D-24837 Schleswig, Germany
Mikael Bjerregaard
Affiliation:
Odense City Museums, Archaeology, Overgade 48, DK-5000 Odense C, Denmark
*
*Corresponding author. Email: Helene.rose@schloss-gottorf.de.

Abstract

Multiple burial in medieval burial grounds are often interpreted as a result of disease, but it is difficult to test such hypotheses, as most acute infectious diseases leave no visible evidence on skeletal material. Scientific dating can potentially associate multiple burials with historically documented epidemics, but the precision required to exclude alternative explanations would normally be attainable only by dendrochronology. Here, we argue that by combining archaeological, osteological and paleodiet research in a Bayesian framework, we can exploit differences in dietary reservoir effects to refine the dates of multiple burials, and potentially date such events to within a range of <20 years. We present new radiocarbon (14C) and stable isotope (δ13C, δ15N) results from a medieval multiple grave at St Alban’s Odense, on the island of Funen in central Denmark. We show the ca. 150-yr spread in 14C ages of the five juveniles is compatible with differences in the amount of fish they consumed. Our chronological model, which combines marine reservoir effect correction with calendar age offsets based on osteological evidence, dates the multiple burial to cal AD 1425–1445 (95% probability), an interval in which two plague epidemics took place in Denmark.

Type
Methodological Advances
Copyright
© 2018 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Selected Papers from the 2nd International Radiocarbon and Diet Conference: Aquatic Food Resources and Reservoir Effects, 20–23 June 2017, Aarhus, Denmark

References

REFERENCES

Albrechtsen, E. 1956. Albani Torv. Fynske Minder 1956:203219.Google Scholar
AlQahtani, SJ, Hector, MP, Liversidge, HM. 2010. Brief communication: the London atlas of human tooth development and eruption. American Journal of Physical Anthropology 142(3):481490.Google Scholar
Arentoft, E. 1985. Sankt Albani Kirke. Albani Kirke & Torv. Fynske Studier XIV:7–59.Google Scholar
Arneborg, J, Heinemeier, J, Lynnerup, N, Nielsen, HL, Rud, N, Sveinbjörnsdóttir, ÁE. 1999. Change of diet of the Greenland Vikings determined from stable carbon isotope analysis and 14C dating of their bones. Radiocarbon 41(2):157168.Google Scholar
Bass, WM. 1995. Human Osteology: A Laboratory and Field Manual. Columbia (MO): Missouri Archaeological Society.Google Scholar
Beaumont, J, Montgomery, J. 2015. Oral histories: a simple method of assigning chronological age to isotopic values from human dentine collagen. Annals of Human Biology 42(4):407414.Google Scholar
Bisgaard, L. 2009. Danish Plague Patterns, 1360–1500. In: Bisgaard L, Søndergaard L, editors. Living with the Black Death. Odense: University Press of Southern Denmark. p 85108.Google Scholar
Bronk Ramsey, C. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51(1):337360.Google Scholar
Burt, NM. 2013. Stable isotope ratio analysis of breastfeeding and weaning practices of children from medieval Fishergate House York, UK. American Journal of Physical Anthropology 152(3):407416.Google Scholar
Christensen, JT. 1999. Døden skiller – om kirkegårdsskel og -skik under Skt. Knuds Plads. Fynske minder 1999:8392.Google Scholar
Christensen, JT, Bjerregaard, MM. 2017. Albani Kirke og kirkegård. In: Runge M, Hansen J, editors. Knuds Odense - Vikingernes By. Odense. p 116127.Google Scholar
DeNiro, MJ. 1985. Postmortem preservation and alteration of in vivo bone collagen isotope ratios in relation to palaeodietary reconstruction. Nature 317(6040):806809.Google Scholar
DeWitte, SN. 2010. Age patterns of mortality during the Black Death in London, A.D. 1349–1350. Journal of Archaeological Science 37(12):33943400.Google Scholar
Doppler, S, Vohberger, M, von Carnap-Bornheim, C, Heinrich, D, Peters, J, Grupe, G. 2010. Biodiversity of archaeological fauna in the estuarine palaeoecosystem of the Schlei Fjord, northern Germany: isotopic evidence. Documenta Archaeobiologiae 8:2170.Google Scholar
Eliasen, K, Johannsen, BB, Johannsen, H, Vedsø, M. 2001. †S. Albani Kirke. Danmarks Kirker IX(3):17291748.Google Scholar
Ervynck, A, Boudin, M, van den Brande, T, van Strydonck, M. 2014. Dating human remains from the historical period in Belgium: diet changes and the impact of marine and freshwater reservoir effects. Radiocarbon 56(2):779788.Google Scholar
Etting, V. 2004. Queen Margrete I (1353–1412) and the Founding of the Nordic Union. Leiden: Brill.Google Scholar
Fernandes, R, Nadeau, M-J, Grootes, PM. 2012. Macronutrient-based model for dietary carbon routing in bone collagen and bioapatite. Archaeological and Anthropological Sciences 4(4):291301.Google Scholar
Fernandes, R, Millard, AR, Brabec, M, Nadeau, M-J, Grootes, P. 2014a. Food reconstruction using isotopic transferred signals (FRUITS): a Bayesian model for diet reconstruction. PLOS ONE 9(2):e87436.Google Scholar
Fernandes, R, Meadows, J, Dreves, A, Nadeau, M-J, Grootes, P. 2014b. A preliminary study on the influence of cooking on the C and N isotopic composition of multiple organic fractions of fish (mackerel and haddock). Journal of Archaeological Science 50:153159.Google Scholar
Fischer, A, Olsen, J, Richards, M, Heinemeier, J, Sveinbjörnsdóttir, ÁE, Bennike, P. 2007. Coast–inland mobility and diet in the Danish Mesolithic and Neolithic: evidence from stable isotope values of humans and dogs. Journal of Archaeological Science 34(12):21252150.Google Scholar
Grootes, PM, Nadeau, M-J, Rieck, A. 2004. 14C-AMS at the Leibniz-Labor: radiometric dating and isotope research. Nuclear Instruments and Methods in Physics Research B 223–224:5561.Google Scholar
Grupe, G, Von Carnap-Bornheim, C, Becker, C. 2013. Rise and fall of a medieval trade centre: economic change from viking Haithabu to medieval Schleswig revealed by stable isotope analysis. European Journal of Archaeology 16(1):1366.Google Scholar
Hammers, NM. 2017. Assessing cultivation conditions and variation through stable isotope analysis (delta13C and delta15N) on cereal crops from medieval Odense (Denmark). Radiocarbon and Diet 2 Conference. Aarhus University.Google Scholar
Kieffer-Olsen, J. 1993. Grav og gravskik i det mid delalderlige Danmark: 8 kirkegårdsudgravninger. Højbjerg: Afd. for Middelalder- og renæssancearkæologi.Google Scholar
Luhmann, N, Doerr, D, Chauve, C. 2017. Comparative scaffolding and gap filling of ancient bacterial genomes applied to two ancient Yersinia pestis genomes. Microbial Genomics 3:111.Google Scholar
Millard, A. 2015. Palace Green Library Excavations 2013 (PGL13): Chronology of the Burials. Durham: Department of Archaeology, Durham University.Google Scholar
Nilsson, B. 1987. Död och begravning. Begravningsskicket i Norden. Tanke och tro. Aspekter på medeltidens tankevärld och fromhetsliv. Studier til det medeltida Sverige 3:133150.Google Scholar
Olsen, TB. 2016. Antropologisk rapport OBM3183, Albani Torv. Retsmedicinsk Institut, Antropologisk Afdeling, ADBOU, Syddansk Universitet.Google Scholar
Pedersen, K, Bjerregaard, MM. 2016. Sygdom, død og begravelse på Albani Kirkegård. Observationer fra en igangværende arkæologisk udgravning. Bibliotek for Læger 208:158177.Google Scholar
Ranåker, M. 2009. Flerpersonsgravar uder medeltid. Västerhus kyrkogård belyst av andra begravplatser. In: Iregren E, Alexandersen V, Redin L, editors. Västerhus. Kapell, kyrkogård och befolkning: Kungl. Vitterhets Historie och Antikvitets Akademien. p 2639.Google Scholar
Reimer, PJ, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Ramsey, CB, Buck, CE, Cheng, H, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Haflidason, H, Hajdas, I, Hatté, C, Heaton, TJ, Hoffmann, DL, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, Manning, SW, Niu, M, Reimer, RW, Richards, DA, Scott, EM, Southon, JR, Staff, RA, Turney, CSM, van der Plicht, J. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(04):18691887.Google Scholar
Richards, MP, Mays, S, Fuller, BT. 2002. Stable carbon and nitrogen isotope values of bone and teeth reflect weaning age at the Medieval Wharram Percy site, Yorkshire, UK. American Journal of Physical Anthropology 119(3):205210.Google Scholar
Roberts, C, Manchester, K. 2005. The Archaeology of Disease. Ithaca (NY): Cornell University Press.Google Scholar
Scheuer, L, Black, S. 2000. Developmental Juvenile Osteology. San Diego (CA): Academic Press.Google Scholar
Star, B, Boessenkool, S, Gondek, AT, Nikulina, EA, Hufthammer, AK, Pampoulie, C, Knutsen, H, André, C, Nistelberger, HM, Dierking, J, Petereit, C, Heinrich, D, Jakobsen, KS, Stenseth, NC, Jentoft, S, Barrett, JH. 2017. Ancient DNA reveals the Arctic origin of Viking Age cod from Haithabu, Germany. Proceedings of the National Academy of Sciences 114(34):91529157.Google Scholar
Stuiver, M, Polach, HA. 1977. Discussion: reporting of 14C data. Radiocarbon 19(3):355363.Google Scholar
van der Sluis, LG, Reimer, PJ, Lynnerup, N. 2016. Investigating intra-individual dietary changes and 14C ages using high-resolution δ13C and δ15N isotope ratios and 14C ages obtained from dentine increments. Radiocarbon 57(4):665677.Google Scholar
Waldron, T. 2009. Palaeopathology. Cambridge: Cambridge University Press.Google Scholar
Ward, GK, Wilson, SR. 1978. Procedures for comparing and combining radiocarbon age determinations: a critique. Archaeometry 20(1):1931.Google Scholar
Yoder, C. 2010. Diet in medieval Denmark: a regional and temporal comparison. Journal of Archaeological Science 37(9):22242236.Google Scholar