Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-28T23:55:09.710Z Has data issue: false hasContentIssue false

Brazilian AMS Radiocarbon Laboratory (LAC-UFF) and intercomparison of preliminary results with Sample Preparation Laboratory (LAPA14C – UFBA)

Published online by Cambridge University Press:  27 January 2025

Tárcio Henrique Ribeiro dos Santos
Affiliation:
Instituto Federal de Educação, Ciência e Tecnologia da Bahia – IFBA, 45400-000, Campus Valença, Brazil
Maria do Rosário Zucchi*
Affiliation:
Departamento de Física da Terra e do Meio Ambiente, Instituto de Física, Universidade Federal da Bahia – UFBA, 40.170-115, Salvador, Brazil Programa de Pós-Graduação em Geoquímica: Petróleo e Meio Ambiente (POSPETRO), Universidade Federal da Bahia – UFBA, 40.170-110, Salvador, Brazil
Alexandre Barreto Costa
Affiliation:
Departamento de Física da Terra e do Meio Ambiente, Instituto de Física, Universidade Federal da Bahia – UFBA, 40.170-115, Salvador, Brazil Programa de Pós-Graduação em Geoquímica: Petróleo e Meio Ambiente (POSPETRO), Universidade Federal da Bahia – UFBA, 40.170-110, Salvador, Brazil
Fabiana Monteiro de Oliveira
Affiliation:
LAC-UFF, Laboratório de Radiocarbono, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza, s/n, Niterói, RJ, 24210-346, Brazil Programa de Pós-graduação em Química, Universidade Federal Fluminense – UFF, Niterói, RJ, 24020-141, Brazil
Kita Chaves Damasio Macario
Affiliation:
LAC-UFF, Laboratório de Radiocarbono, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza, s/n, Niterói, RJ, 24210-346, Brazil Programa de Pós-Graduação em Geociências (Goquímica), Instituto de Química, Universidade Federal Fluminense – UFF, Niterói, RJ, 24020-141, Brazil
José Marques Lopes
Affiliation:
Departamento de Física da Terra e do Meio Ambiente, Instituto de Física, Universidade Federal da Bahia – UFBA, 40.170-115, Salvador, Brazil Programa de Pós-Graduação em Geoquímica: Petróleo e Meio Ambiente (POSPETRO), Universidade Federal da Bahia – UFBA, 40.170-110, Salvador, Brazil
Naiana Dias dos Santos
Affiliation:
Programa de Pós-Graduação em Geoquímica: Petróleo e Meio Ambiente (POSPETRO), Universidade Federal da Bahia – UFBA, 40.170-110, Salvador, Brazil
Antonio Expedito Gomes de Azevedo
Affiliation:
Departamento de Física da Terra e do Meio Ambiente, Instituto de Física, Universidade Federal da Bahia – UFBA, 40.170-115, Salvador, Brazil
Adriana Barioni
Affiliation:
Departamento de Ciências do Mar, Universidade Federal de São Paulo – UNIFESP, 11015-020, Santos, Brazil
Doriedson Ferreira Gomes
Affiliation:
Instituto de Biologia, Laboratório de Paleoecologia (EcoPaleo), Universidade Federal da Bahia – UFBA, 40170-115, Brazil
*
Corresponding author: Maria do Rosário Zucchi; Email: mrzucchi@ufba.br

Abstract

This study presents the initial results of carbon-14 dating after performing sample preparation and graphite production processes at the Federal University of Bahia (UFBA) in an intercomparison with the same processes performed at the Radiocarbon Laboratory of the Fluminense Federal University (LAC-UFF). Both laboratories are located in Brazil. The accelerator mass spectrometry (AMS) system at LAC-UFF was used for radiocarbon measurements. To verify any possible contamination sources during sample preparation, we initially performed swipe tests at UFBA, which were subsequently processed and the graphite samples were produced at LAC-UFF. After UFBA, several reference materials (IAEA-C1, -C2, -C6, -C9, and OXII standards) were prepared and converted into graphite. In addition, the sample material was first partially prepared at UFF and UFBA and then analyzed with the AMS system at LAC-UFF. Subsamples were prepared for additional measurements of the δ13C composition with an elemental analyzer coupled to an isotope ratio mass spectrometer (EA–IRMS) in LFNA-UFBA to study the isotopic fractionation and yield of the graphitization reaction. The obtained values closely aligned with the reference values, demonstrating reproducibility and quality and indicating minimal contamination during chemical and graphitization processes. In the future, samples from different matrices will be prepared at UFBA for application in paleoenvironmental and archaeological studies.

Type
Conference Paper
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of University of Arizona

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Selected Papers from the 2nd Latin American Radiocarbon Conference, Mexico City, 4–8 Sept. 2023

References

Adolphi, F, Güttler, D, Wacker, L, Skog, G and Muscheler, R (2013) Intercomparison of 14C dating of wood samples at Lund University and ETH-Zurich AMS facilities: extraction, graphitization, and measurement. Radiocarbon 55(2), 391400.CrossRefGoogle Scholar
Anjos, RM, Macario, KD, Gomes, PRS, Linares, R, Queiroz, E and Carvalho, C (2013) Towards a complete 14C AMS facility at the Universidade Federal Fluminense (Niterói, Brazil): sample preparation laboratory tests. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 294, 173175.CrossRefGoogle Scholar
Barbosa, M, Buarque, A, Gaspar, MD, Macario, KD, Anjos, RM, Gomes, PRS, et al. (2004) Intermittent occupation of the sambaqui builder settlements in Rio de Janeiro State, Brazil. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 223, 695699.CrossRefGoogle Scholar
Bragança, D, Oliveira, F, Macario, K, Nunes, V, Muniz, M, Lamego, F, et al. (2021) Establishing water sample protocols for radiocarbon analysis at LAC-UFF, Brazil. Radiocarbon 63(4), 12251232.CrossRefGoogle Scholar
Cisneros, JC, Raja, NB, Ghilardi, AM, Dunne, EM, Pinheiro, FL, Regalado Fernández, OR et al. (2022) Digging deeper into colonial palaeontological practices in modern-day Mexico and Brazil. Royal Society Open Science 9(3), 210898.CrossRefGoogle ScholarPubMed
Costa, IS (1997) Hidrologia isotópica de águas subterrâneas na região de Cipó-BA. Revista Brasileira de Geofísica 15, 8989.CrossRefGoogle Scholar
Cuzange, MT, Delqué-Količ, E, Goslar, T, Grootes, PM, Higham, T, Kaltnecker, E, et al. (2007) Radiocarbon intercomparison program for Chauvet Cave. Radiocarbon 49(2), 339347.CrossRefGoogle Scholar
Docio, L, Rasbold, GG, da Silva, ALC, Parolin, M, Caxambu, MG and Pinheiro, U (2021) An assessment of the wealth of information given by sponge spicules as a paleoenvironmental tool: The case of two lakes in the northeast (Brazil). Journal of South American Earth Sciences 107, 103099.CrossRefGoogle Scholar
Duin, RS, Toinaike, K, Alupki, T and Opoya, A (2015) Archaeology of engagement: Indigenous people, social memory, and making history in the Upper Maroni Basin (Northern Amazonia). Current Anthropology 56(5), 753761.CrossRefGoogle Scholar
Dumoulin, JP, Comby-Zerbino, C, Delqué-Količ, E, Moreau, C, Caffy, I, Hain, S, Perron, M, Thellier, B, Setti, V, Berthier, B and Beck, L (2017) Radiocarbon status report on sample preparation protocols developed at the LMC14 Laboratory, Saclay, France: From sample collection to 14C AMS measurement. Radiocarbon 59(3), 713726.CrossRefGoogle Scholar
Flexor, JM, Lôbo, PFS and Rapaire, JL (1972) Estudo da evolução da matéria orgânica do solo utilizando o Carbono-14 produzido nos ensaios termonucleares atmosféricos. Revista Brasileira de Geociências 2(4), 260269.CrossRefGoogle Scholar
Green, LF, Green, DR and Neves, EG (2016) Indigenous Knowledge and archaeological science: the challenges of public archaeology in the Reserva Uaçá. In Indigenous Archaeologies. Routledge, 235240.Google Scholar
Jull, AJT, Pearson, CL, Taylor, RE, Southon, JR, Santos, GM, Kohl, CP, et al. (2018) Radiocarbon dating and intercomparison of some early historical radiocarbon samples. Radiocarbon 60(2), 535548.CrossRefGoogle Scholar
Kuzmin, YV, Fiedel, SJ, Street, M, Reimer, PJ, Boudin, M, van der Plicht, J, et al. (2018) A laboratory inter-comparison of AMS 14C dating of bones of the Miesenheim IV elk (Rhineland, Germany) and its implications for the date of the Laacher See eruption. Quaternary Geochronology 48, 716.CrossRefGoogle Scholar
Lima, TA, Macario, KD, Anjos, RM, Gomes, PRS, Coimbra, MM and Elmore, D (2002) The antiquity of the prehistoric settlement of the central-south Brazilian coast. Radiocarbon 44(3), 733738.CrossRefGoogle Scholar
Linares, R, Macario, KD, Santos, GM, Carvalho, C, dos Santos, HC, Gomes, PRS, Castro, MD, Oliveira, FM and Alves, EQ (2015) Radiocarbon measurements at LAC-UFF: Recent performance. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 361, 341345.CrossRefGoogle Scholar
Lôbo, PFS (1972) Use of Atmospheric C-14 as a Soil Organic Matter Tracer. Master’s thesis presented in the postgraduate program in Geophysics at the Federal University of Bahia (in Portuguese).Google Scholar
Macario, KD, Gomes, PRS, Anjos, RM, Carvalho, C, Linares, R, Alves, EQ, et al. (2013) The Brazilian AMS Radiocarbon Laboratory (LAC-UFF) and the intercomparison of results with CENA and UGAMS. Radiocarbon 55(2), 325330.CrossRefGoogle Scholar
Macario, KD, Oliveira, FM, Carvalho, C, Santos, GM, Xu, X, Chanca, IS, et al. (2015) Advances in the graphitization protocol at the Radiocarbon Laboratory of the Universidade Federal Fluminense (LAC-UFF) in Brazil. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 361, 402405.CrossRefGoogle Scholar
Miller, J, Lehman, S, Wolak, C, Turnbull, J, Dunn, G, Graven, H, et al. (2013) Initial results of an intercomparison of AMS-based atmospheric 14CO2 measurements. Radiocarbon 55(3), 14751483.CrossRefGoogle Scholar
Oliveira, F, Macario, K, Carvalho, C, Moreira, V, Alves, EQ, Chanca, I, et al. (2021) LAC-UFF status report: Current protocols and recent developments. Radiocarbon 63(4), 12331245. doi: 10.1017/RDC.2020.138.CrossRefGoogle Scholar
Oliveira, F, Macario, K, Silva, K, et al. (2020) Preliminary radiocarbon dating results of bone samples at the LAC-UFF, Brazil. Radiocarbon. doi:10.1017/RDC.2020.125.CrossRefGoogle Scholar
Oliveira, FM, Macario, KD, Pereira, BB, et al. (2016) Evaluation of sample preparation protocols for the 14C dating of Tupiguarani pottery in southeastern Brazil. Radiocarbon. doi:10.1017/RDC.2016.58.CrossRefGoogle Scholar
Pauwels, J, Lamberty, A and Schimmel, H (1998) The determination of the uncertainty of reference materials certified by laboratory intercomparison. In De Bièvre, P, Günzler, H (eds), Measurement Uncertainty in Chemical Analysis. Berlin, Heidelberg: Springer.Google Scholar
Quarta, G, Hajdas, I, Molnár, M, Varga, T, Calcagnile, L, D’Elia, M et al. (2022) The IAEA forensics program: Results of the AMS 14C intercomparison exercise on contemporary wines and coffees. Radiocarbon 64(6), 15131524.CrossRefGoogle Scholar
Quarta, G, Molnár, M, Hajdas, I, Calcagnile, L, Major, I and Jull, AJT (2021) 14C intercomparison exercise on bones and ivory samples: implications for forensics. Radiocarbon 63(2), 533544.CrossRefGoogle Scholar
Santos, THR (2020) Implementation of a Sample Preparation Laboratory for 14C Dating via Mass Spectrometry with Accelerators in Bahia. Doctoral thesis presented to the Graduate Program in Physics at the Federal University of Bahia (in Portuguese).Google Scholar
Scott, EM, Cook, GT, Naysmith, P and Staff, RA (2019) Learning from the wood samples in ICS, TIRI, FIRI, VIRI, and SIRI. Radiocarbon 61(5), 12931304.CrossRefGoogle Scholar
Scott, EM, Harkness, DD and Cook, GT (2016) Interlaboratory comparisons: Lessons learned. Radiocarbon 40(1), 331340.CrossRefGoogle Scholar
Scott, EM, Naysmith, P and Cook, GT (2017) Should archaeologists care about 14C intercomparisons? Why? A summary report on SIRI. Radiocarbon 59(5), 15891596.Google Scholar
Scott, EM, Naysmith, P and Cook, GT (2018) Why do we need 14C inter-comparisons?: The Glasgow-14C inter-comparison series, a reflection over 30 years. Quaternary Geochronology 43, 7282.CrossRefGoogle Scholar
Shen, H, Tang, J, Wang, L, Qi, M, Li, Z, Wei, S, Sasa, K, Shi, S, Zhang, G, Chen, D, Qi, L, Wang, N, Zhou, H, He, M, Zhao, Q and He, Y (2022) New sample preparation line for radiocarbon measurements at the GXNU laboratory. Radiocarbon 64(6), 15011511.CrossRefGoogle Scholar
Sironić, A, Bronić, IK, Horvatinčić, N, Barešić, J, Obelić, B and Felja, I (2013) Status report on the Zagreb Radiocarbon Laboratory–AMS and LSC results of VIRI intercomparison samples. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 294, 185188.CrossRefGoogle Scholar
Szidat, S, Bench, G, Bernardoni, V, Calzolai, G, Czimczik, CI, Derendorp, L, et al. (2013) Intercomparison of 14C analysis of carbonaceous aerosols: Exercise 2009. Radiocarbon 55(3), 14961509.CrossRefGoogle Scholar
Takahashi, HA, Minami, M, Aramaki, T, Handa, H, Saito-Kokubu, Y, Itoh, S and Kumamoto, Y (2019) A suitable procedure for preparing of water samples used in radiocarbon intercomparison. Radiocarbon 61(6), 18791887.CrossRefGoogle Scholar
Varga, T, Hajdas, I, Calcagnile, L, Quarta, G, Major, I, Jull, AT, et al. (2023) Intercomparison exercise on fuel samples for determination of biocontent ratio by 14C accelerator mass spectrometry. Radiocarbon 65(2), 539548.CrossRefGoogle Scholar
Xu, X, Trumbore, SE, Zheng, S, Southon, JR, McDuffee, KE, Luttgen, M and Liu, JC (2007) Modifying a sealed tube zinc reduction method for preparation of AMS graphite targets: Reducing background and attaining high precision. Nuclear Instruments and Methods in Physics Research B 259(1), 320329.CrossRefGoogle Scholar