Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-26T21:08:35.987Z Has data issue: false hasContentIssue false

AMS Radiocarbon Dating of Ancient Bone Using Ultrafiltration

Published online by Cambridge University Press:  18 July 2016

T F G Higham*
Affiliation:
Oxford Radiocarbon Accelerator Unit, RLAHA, Dyson Perrins Building, University of Oxford, Oxford OX1 3QY, United Kingdom
R M Jacobi
Affiliation:
Department of Prehistory and Europe, Franks House, The British Museum, London N1 5QJ, United Kingdom; also Department of Palaeontology, Natural History Museum, London SW7 5BD, United Kingdom
C Bronk Ramsey
Affiliation:
Oxford Radiocarbon Accelerator Unit, RLAHA, Dyson Perrins Building, University of Oxford, Oxford OX1 3QY, United Kingdom
*
Corresponding author. Email: thomas.higham@rlaha.ox.ac.uk
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Oxford Radiocarbon Accelerator Unit (ORAU) has used an ultrafiltration protocol to further purify gelatin from archaeological bone since 2000. In this paper, the methodology is described, and it is shown that, in many instances, ultrafiltration successfully removes low molecular weight contaminants that less rigorous methods may not. These contaminants can sometimes be of a different radiocarbon age and, unless removed, may produce erroneous determinations, particularly when one is dating bones greater than 2 to 3 half-lives of 14C and the contaminants are of modern age. Results of the redating of bone of Late Middle and Early Upper Paleolithic age from the British Isles and Europe suggest that we may need to look again at the traditional chronology for these periods.

Type
Articles
Copyright
Copyright © 2006 by the Arizona Board of Regents on behalf of the University of Arizona 

References

Aldhouse-Green, S, Scott, K, Schwarcz, H, Grün, R, Housley, R, Rae, A, Bevins, R, Redknap, M. 1995. Coygan Cave, Laugharne, South Wales, a Mousterian site and hyaena den: a report on the University of Cambridge excavations. Proceedings of the Prehistoric Society 61:3779.CrossRefGoogle Scholar
Ambrose, SH. 1990. Preparation and characterisation of bone and tooth collagen for isotopic analysis. Journal of Archaeological Science 17:431–51.CrossRefGoogle Scholar
Baker, A, Smart, PL, Edwards, RL. 1996. Mass spectrometric dating of flowstones from Stump Cross Caverns and Lancaster Hole, Yorkshire: palaeoclimate implications. Journal of Quaternary Science 11:107–14.3.0.CO;2-E>CrossRefGoogle Scholar
Bocquet-Appel, J-P, Demars, PY. 2000. Neanderthal contraction and modern human colonization of Europe. Antiquity 74(285):544–52.CrossRefGoogle Scholar
Bronk Ramsey, C, Pettitt, PB, Hedges, REM, Hodgins, GWL, Owen, DC. 2000. Radiocarbon dates from the Oxford AMS system: Archaeometry datelist 30. Archaeometry 42(2):459–79.Google Scholar
Bronk Ramsey, C, Higham, TFG, Bowles, A, Hedges, REM. 2004a. Improvements to the pretreatment of bone at Oxford. Radiocarbon 46(1):155–63.CrossRefGoogle Scholar
Bronk Ramsey, C, Higham, TFG, Leach, P. 2004b. Towards high-precision AMS: progress and limitations. Radiocarbon 46(1):1724.CrossRefGoogle Scholar
Brown, TA, Nelson, DE, Vogel, JS, Southon, JR. 1988. Improved collagen extraction by modified Longin method. Radiocarbon 30(2):171–7.CrossRefGoogle Scholar
Burky, RR, Kirner, DL, Taylor, RE, Hare, PE, Southon, JR. 1998. 14C dating of bone using ?-carboxyglutamic acid and a-carboxyglycine (aminomalonate). Radiocarbon 40(1):1120.Google Scholar
Conard, NJ, Bolus, M. 2003. Radiocarbon dating the appearance of modern humans and timing of cultural innovations in Europe: new results and new challenges. Journal of Human Evolution 44(3):331–71.Google Scholar
Currant, AP, Jacobi, RM. 1997. Vertebrate faunas of the British Late Pleistocene and the chronology of human settlement. Quaternary Newsletter 82:18.Google Scholar
Currant, AP, Jacobi, RM. 2001. A formal mammalian biostratigraphy for the Late Pleistocene of Britain. Quaternary Science Reviews 20(16–17):1707–16.CrossRefGoogle Scholar
Davies, SWG. 2001. A very model of a modern human industry: new perspectives on the origins and spread of the Aurignacian in Europe. Proceedings of the Prehistoric Society 67:195217.CrossRefGoogle Scholar
Davies, SWG, Gollop, P. 2003. The human presence in Europe during the Last Glacial Period II: climate tolerance and climate preferences of Mid- and Late Glacial hominids. In: van Andel, TH, Davies, W, editors. Neanderthals and Modern Humans in the European Landscape During the Last Glaciation: Archaeological Results of the Stage 3 Project. Cambridge: McDonald Institute for Archaeological Research. p 131–46.Google Scholar
Delporte, H. 1984. Le Grand Abri de la Ferrassie: Fouilles 1968–1973. éditions du Laboratoire de Paléontologie Humaine et de Préhistoire. études Quaternaires, Géologie, Paléontologie, Préhistoire, Memoire no. 7. In French.Google Scholar
DeNiro, MJ, Weiner, S. 1988a. Chemical, enzymatic and spectroscopic characterisation of “collagen” and other organic fractions from archaeological bones. Geochimica et Cosmochimica Acta 52:2197–206.CrossRefGoogle Scholar
DeNiro, MJ, Weiner, S. 1988b. Use of collagenase to purify collagen from prehistoric bones for stable isotopic analysis. Geochimica et Cosmochimica Acta 52: 2425–31.CrossRefGoogle Scholar
Djindjian, F. 1992. L'Aurignacien du Périgord. Une révision. Préhistoire Européenne 3:2954. In French.Google Scholar
Gillespie, R, Hedges, REM. 1983. Sample chemistry for the Oxford high energy mass spectrometer. Radiocarbon 25(2):771–4.CrossRefGoogle Scholar
Gillespie, R, Hedges, REM, Wand, JO. 1984. Radiocarbon dating of bone by accelerator mass spectrometry. Journal of Archaeological Science 11:165–70.CrossRefGoogle Scholar
Gowlett, JAJ, Hedges, REM, Law, IA, Perry, C. 1986. Radiocarbon dates from the AMS system: Archaeometry datelist 4. Archaeometry 28(2):206–21.Google Scholar
Haesaerts, P, Damblon, F. 2004. Les dates radiocarbone de Maisières-Canal. In: Miller, R, Haesaerts, P, Otte, M, editors. études et Recherches Archéologiques de l'Université de Liège (ERAUL) 110. Latelier de taille aurignacien de Maisières-Canal (Belgique). p 27–8. In French.Google Scholar
Hahn, J. 1988. 1. Fiche sagaie à base simple de tradition aurignacienne. In: Delporte, H, Hahn, J, Mons, L, Pinçon, G, de Sonneville-Bordes, D, editors. Sagaies. Fiches typologiques de lindustrie osseuse préhistorique, Cahier I. Union Internationale des Sciences préhistoriques et protohistoriques: Commission de Nomenclature sur l'Industrie de les préhistorique. p 117. In French.Google Scholar
Hedges, REM, Millard, AR. 1995. Bones and groundwater: towards the modelling of diagenetic processes. Journal of Archaeological Science 22:155–64.Google Scholar
Hedges, REM, Housley, RA, Law, IA, Bronk, CR. 1989a. Radiocarbon dates from the Oxford AMS system: Archaeometry datelist 9. Archaeometry 31(2):207–34.CrossRefGoogle Scholar
Hedges, REM, Law, IA, Bronk, CR, Housley, RA. 1989b. The Oxford accelerator mass spectrometry facility: technical developments in routine dating. Archaeometry 31:99113.CrossRefGoogle Scholar
Hedges, REM, Housley, RA, Bronk Ramsey, C, van Klinken, GJ. 1994. Radiocarbon dates from the Oxford AMS system: Archaeometry datelist 18. Archaeometry 36(2):337–74.Google Scholar
Hedges, REM, Lee-Thorp, JA, Tuross, NC. 1995. Is tooth enamel carbonate a suitable material for radiocarbon dating? Radiocarbon 37(2):285–90.Google Scholar
Holmes, KM, Robson Brown, KA, Oates, WP, Collins, MJ. 2005. Assessing the distribution of Asian Palaeolithic sites: a predictive model of collagen degradation. Journal of Archaeological Science 33:971–86.Google Scholar
Jacobi, RM, Pettitt, PB. 2000. An Aurignacian point from Uphill Quarry (Somerset) and the earliest settlement of Britain by Homo sapiens sapiens. Antiquity 74(285):513–8.CrossRefGoogle Scholar
Jacobi, RM, Rowe, PJ, Gilmour, MA, Grün, R, Atkinson, TC. 1998. Radiometric dating of the Middle Palaeolithic tool industry and associated fauna of Pin Hole Cave, Creswell Crags, England. Journal of Quaternary Science 13(1):2942.3.0.CO;2-6>CrossRefGoogle Scholar
Jacobi, RM, Higham, TFG, Bronk Ramsey, C. Forthcoming. Radiocarbon dating of Middle and Upper Palaeolithic bone in the British Isles: improved reliability using ultrafiltration. Journal of Quaternary Science.Google Scholar
Jöris, O, Álvarez Fernández, E, Weninger, B. 2003. Radiocarbon evidence of the Middle to Upper Palaeolithic transition in southwestern Europe. Trabajos de Prehistoria 60(2):1538.CrossRefGoogle Scholar
Kozlowski, JK, Otte, M. 2000. The formation of the Aurignacian in Europe. Journal of Anthropological Research 56(4):513–34.Google Scholar
Law, IA, Hedges, REM. 1989. A semi-automated bone pretreatment system and the pretreatment of older and contaminated samples. Radiocarbon 31(3):247–53.CrossRefGoogle Scholar
Leroy-Prost, C. 1979. Lindustrie osseuse aurignacienne essai régional de classification: Poitou, Charentes, Périgord (suite). Gallia Préhistoire 22(1):205370. In French.Google Scholar
Longin, R. 1971. New method of collagen extraction for radiocarbon dating. Nature 230:241–2.CrossRefGoogle ScholarPubMed
Maddy, D, Lewis, SG, Scaife, RG, Bowen, DQ, Coope, GR, Green, CP, Hardaker, T, Keen, DH, Rees-Jones, J, Parfitt, S, Scott, K. 1998. The Upper Pleistocene deposits at Cassington, near Oxford, England. Journal of Quaternary Science 13:205–31.Google Scholar
Mellars, PA. 2004a. Stage 3 climate and the Upper Palaeolithic revolution in Europe: evolutionary perspectives. In: Cherry, J, Scarre, C, Shennan, S, editors. Explaining Social Change: Studies in Honour of Colin Renfrew. Cambridge: McDonald Institute for Archaeological Research. p 2743.Google Scholar
Mellars, PA. 2004b. Neanderthals and the modern human colonization of Europe. Nature 432:461–5.Google Scholar
Mellars, PA, Bricker, HM. 1986. Radiocarbon accelerator dating in the earlier Upper Palaeolithic. In: Gowlett, JAJ, Hedges, REM, editors. Archaeological Results from Accelerator Dating . Oxford: Oxford University Committee for Archaeology, Monograph 11. Institute of Archaeology, University of Oxford. p 7380.Google Scholar
Movius, HL, editor. 1975. Excavation of the Abri Pataud, Les Eyzies (Dordogne). American School of Prehistoric Research 30. Cambridge, USA: Peabody Museum, Harvard University.Google Scholar
Movius, HL, editor. 1977. Excavation of the Abri Pataud, Les Eyzies (Dordogne): stratigraphy. American School of Prehistoric Research 31. Cambridge, USA: Peabody Museum, Harvard University.Google Scholar
Nelson, DE. 1991. A new method for carbon isotopic analysis of protein. Science 251:552–4.CrossRefGoogle ScholarPubMed
Oakley, KP, Campbell, BG, Molleson, TI. 1971. Catalogue of Fossil Hominids, Part II: Europe London: British Museum (Natural History).Google Scholar
Sinitsyn, AA. 2003. A Palaeolithic ‘Pompeii’ at Kostenki, Russia. Antiquity 77(295):914.CrossRefGoogle Scholar
Stuiver, M, Polach, HA. 1977. Discussion: reporting of 14C data. Radiocarbon 19(3):355–63.CrossRefGoogle Scholar
Stafford, TW, Jull, AJT, Brendel, K, Duhamel, RC, Donahue, DJ. 1987. Study of bone radiocarbon dating accuracy at the University of Arizona NSF accelerator facility for radioisotope analysis. Radiocarbon 29(1): 2444.Google Scholar
Stafford, TW, Hare, PE, Currie, L, Jull, AJT, Donahue, DJ. 1991. Accelerator radiocarbon dating at the molecular level. Journal of Archaeological Science 18:3572.CrossRefGoogle Scholar
Tisnerat-Laborde, N, Valladas, H, Kaltnecker, E, Arnold, M. 2003. AMS radiocarbon dating of bones at LSCE. Radiocarbon 45(3):409–19.Google Scholar
van Klinken, GJ. 1999. Bone collagen quality indicators for palaeodietary and radiocarbon measurements. Journal of Archaeological Science 26:687–95.CrossRefGoogle Scholar
van Klinken, GJ, Hedges, REM. 1995. Experiments on collagen-humic interactions: speed of humic uptake, and effects of diverse chemical treatments. Journal of Archaeological Science 22:263–70.CrossRefGoogle Scholar
van Klinken, GJ, Mook, WG. 1990. Preparative high-performance liquid chromatographic separation of individual amino acids derived from fossil bone. Radiocarbon 32(2):155–64.CrossRefGoogle Scholar
van Klinken, GJ, Bowles, AD, Hedges, REM. 1994. Radiocarbon dating of peptides isolated from contaminated fossil bone collagen by collagenase digestion by reversed-phase chromatography. Geochimica et Cosmochimica Acta 58(11):2543–51.Google Scholar
Von Endt, DW, Ortner, DJ. 1984. Experimental effects of bone size and temperature on bone diagenesis. Journal of Archaeological Science 11:247–53.CrossRefGoogle Scholar
Vrielynk, O. 1999. La chronologie de la préhistoire en Belgique. Inventaire des datations absolues. Liège: Mémoire de la Société Wallonne de Palethnologie 8. In French.Google Scholar
Wild, EM, Teschler-Nicola, M, Kutschera, W, Steier, P, Trinkaus, E, Wanek, W. 2005. Direct dating of early Upper Palaeolithic human remains from Mladec. Nature 435(7040):332–5.Google Scholar