Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-26T20:50:04.023Z Has data issue: false hasContentIssue false

AMS and Microprobe Analysis of Combusted Particles in Ice and Snow

Published online by Cambridge University Press:  18 July 2016

S. R. Biegalski
Affiliation:
Surface and Microanalysis Science Division, National Institute of Standards and Technology Gaithersburg, Maryland 20899 USA
L. A. Currie
Affiliation:
Surface and Microanalysis Science Division, National Institute of Standards and Technology Gaithersburg, Maryland 20899 USA
R. A. Fletcher
Affiliation:
Surface and Microanalysis Science Division, National Institute of Standards and Technology Gaithersburg, Maryland 20899 USA
G. A. Klouda
Affiliation:
Surface and Microanalysis Science Division, National Institute of Standards and Technology Gaithersburg, Maryland 20899 USA
Rolland Weissenbök
Affiliation:
Institute for Radium Research and Nuclear Physics, University of Vienna, Währingerstrasse 17 A-1090 Vienna, Austria
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Ice cores and snow pits of the cryosphere contain particles that detail the history of past atmospheric air compositions. Some of these particles result from combustion processes and have undergone long-range transport to arrive in the Arctic. Recent research has focused on the separation of particulate matter from ice and snow, as well as the subsequent analysis of the separated particles for 14C with accelerator mass spectrometry (AMS) and for individual particle compositions with laser microprobe mass analysis (LAMMA). The very low particulate concentrations in Arctic samples make these measurements a challenge. The first task is to separate the particles from the ice core. Two major options exist to accomplish this separation. One option is to melt the ice and then filter the meltwater. A second option is to sublimate the ice core directly, depositing the particles onto a surface. This work demonstrates that greater control is obtained through sublimation. A suite of analytical methods has been used for the measurement of the carbon in snow and ice. Total carbon was analyzed with a carbon/nitrogen/hydrogen (CHN) analyzer. AMS was used for the determination of carbon isotopes. Since source identification of the carbonaceous particles is of primary importance here, the use of LAMMA was incorporated to link individual particle molecular-structural patterns to the same group of particles that were measured by the other techniques. Prior to this study, neither AMS nor LAMMA had been applied to particles contained in snow. This paper discusses the development and limitations of the methodology required to make these measurements.

Type
Part 1: Methods
Copyright
Copyright © The American Journal of Science 

References

Bruynseels, F., Storm, H., van Grieken, R. and Auwera, L. V. 1988 Characterization of North Sea aerosols by individual particle analysis. Atmospheric Environment 22(1): 25932602.Google Scholar
Cachier, H. and Pertuisot, M. H. 1994 Particulate carbon in Arctic ice. Analusis 22: 3437.Google Scholar
CE Instruments 1996 Instruction Manual: EA 1110 Elemental Analyzers. P/N 317.082.10, Rev. W06 0596mv. Rodano-Milan, Italy, Fisons Instruments S.p.A.Google Scholar
Chýlek, P., Johnson, B., Damiano, P. A., Taylor, K. C. and Clement, P. 1995 Biomass burning record and black carbon in the GISP2 ice core. Geophysical Research Letters 22(2): 8992.Google Scholar
Chýlek, P., Johnson, B. and Wu, H. 1992 Black carbon concentration in a Greenland Dye-3 ice core. Geophysical Research Letters 19(19): 19511953.CrossRefGoogle Scholar
Chýlek, P., Sricastava, V., Cahenzli, L., Pinnick, R. G., Dod, R. L., Novakov, T., Cook, T. I. and Hinds, B.D. 1987 Aerosol and graphitic carbon content of snow. Journal of Geophysical Research 92(D8): 9801–9809.CrossRefGoogle Scholar
Clayton, G. D., Arnold, J. R. and Parry, F. A. 1955 Determination of the sources of particulate atmospheric carbon. Science 122: 751.CrossRefGoogle ScholarPubMed
Cooper, J. A., Currie, L. A. and Klouda, G. A. 1981 Assessment of contemporary carbon combustion source contributions to urban air particulate levels using carbon-14 measurements. Environmental Science and Technology 15(9): 10451050.CrossRefGoogle ScholarPubMed
Currie, L. A., Benner, B. A. Jr., Klouda, G. A., Conny, J. M. and Dibb, J. E. (abstract) 1996 Tracking biomass burning aerosol: From the combustion laboratory to Summit, Greenland. Workshop on Global Climate Change. Radiocarbon 38(1): 20.Google Scholar
Currie, L. A., Dibb, J. E., Klouda, G. A., Benner, B. A., Conny, J. M., Biegalski, S. R., Klinedinst, D. B., Cahoon, D. C. and Hsu, N. C. 1998 The pursuit of isotopic and molecular fire tracers in the polar atmosphere and cryosphere. Radiocarbon, this issue.CrossRefGoogle Scholar
Currie, L. A., Fletcher, R.A. and Klouda, G. A. 1989 Source apportionment of individual carbonaceous particles using 14C and laser microprobe mass spectrometry. Aerosol Science and Technology 10(2): 370378.CrossRefGoogle Scholar
Currie, L. A., Klouda, G. A., Klinedinst, D. B., Sheffield, A. E., Jull, A. J. T., Donahue, D. J. and Connolly, M. V. 1994 Fossil- and bio-mass combustion: C-14 for source identification, chemical tracer development and model validation. Nuclear Instruments and Methods in Physics Research B92: 404409.Google Scholar
Denoyer, E., van Grieken, R., Adams, F. and Natusch, D. F. S. 1982 Laser microprobe mass spectrometry I: Basic principles and performance characteristics. Analytical Chemistry 54:1, 26A.Google Scholar
Hildemann, L. M., Klinedinst, D. B., Klouda, G. A., Currie, L. A. and Cass, G. R. 1994 Sources of urban contemporary carbon aerosol. Environmental Science and Technology 28(9): 15651576.CrossRefGoogle ScholarPubMed
Kaufmann, R. 1986 Laser-microprobe mass spectroscopy (LAMMA) of particulate matter. In Spurny, K. R., ed., Physical and Chemical Characterization of Individual Airborne Particles. New York, John Wiley & Sons: 226250.Google Scholar
Klinedinst, D. B., McNichol, A. P., Currie, L. A., Schneider, R. J., Klouda, G. A., von Reden, K. F., Verkouteren, R. M. and Jones, G. A. 1994 Comparative study of Fe-C bead and graphite target performance with the National Ocean Science AMS (NOSAMS) facility recombinator ion source. Nuclear Instruments and Methods in Physics Research B92: 166171.Google Scholar
McElroy, M. B. 1994 Climate of the Earth: An overview. Environmental Pollution 83: 321.CrossRefGoogle ScholarPubMed
Otten, Ph., Bruynseels, F. and van Grieken, R. 1987 Study of inorganic ammonium compounds in individual marine aerosol particles by laser microprobe mass spectrometry. Analytica Chimica Acta 195: 117.CrossRefGoogle Scholar
Peters, A. J., Gregor, D. J., Teixerira, C. F., Jones, N. P. and Spencer, C. 1995 The recent depositional trend of polycyclic aromatic hydrocarbons and elemental carbon to the Agassiz Ice Cap, Ellesmere Island, Canada. The Science of the Total Environment 160/161: 167179.Google Scholar
Pilinis, C. and Pandis, S. N. 1995 Physical, chemical and optical properties of atmospheric aerosols. In Kouimitzis, T. and Samara, C., eds., Airborne Particulate Matter. New York, Springer: 339 p.Google Scholar
Samara, C. 1995 Analysis of organic particulate matter. In Kouimitzis, T. and Samara, C., eds., Airborne Particulate Matter. New York, Springer.Google Scholar
Surkyn, P., de Waele, J. and Adams, F. 1983 Laser microprobe mass analysis for source identification of air particulate matter. International Journal of Environmental Analytical Chemistry 13: 257263.CrossRefGoogle Scholar
van Vaeck, L., van Roy, W., Gijbels, R. and Adams, F. 1993 Lasers in Mass Spectrometry: Organic and Inorganic Instrumentation. In Vertes, A., Gijbels, R. and Adams, F., eds., Laser Ionization Mass Analysis. New York, John Wiley & Sons, Inc.: 4251.Google Scholar
Verkouteren, R. M., Klinedinst, D. B. and Currie, L. A. 1997 Iron-manganese system for preparation of radiocarbon AMS targets: Characterization of procedural chemical-isotopic blanks and fractionation. Radiocarbon 39(3): 269283.CrossRefGoogle Scholar
Wieser, P., Wurst, R., Haas, H. and Fresenius, U. 1981 Particulate aerosol analysis with laser microprobe mass analysis. Zeitschrift für Analytische Chemie 308: 260.Google Scholar
Wieser, P. and Wurster, R. 1986 Application of laser-microprobe mass analysis to particle collections. In Spurny, K. R., ed., Physical and Chemical Characterization of Individual Airborne Particles. New York, John Wiley & Sons: 251270.Google Scholar
Wilson, A. T. 1995 Application of AMS 14C dating to ice core research. In Cook, G. T., Harkness, D. D., Miller, B. F. and Scott, E. M., eds., Proceedings of the 15th International 14C Conference. Radiocarbon 37(2): 637641.Google Scholar
Wilson, A. T. and Donahue, D. J. 1990 AMS 14C dating of ice: Progress and future prospects. Nuclear Instruments and Methods in Physics Research B52: 473476 CrossRefGoogle Scholar