Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T21:11:56.184Z Has data issue: false hasContentIssue false

AMS 14C Dating of Equipment from the Iceman and of Spruce Logs from the Prehistoric Salt Mines of Hallstatt

Published online by Cambridge University Press:  18 July 2016

Werner Rom
Affiliation:
Vienna Environmental Research Accelerator, Institut für Radiumforschung und Kernphysik, Universität Wien, Währinger Strasse 17, A-1090 Wien, Austria
Robin Golser
Affiliation:
Vienna Environmental Research Accelerator, Institut für Radiumforschung und Kernphysik, Universität Wien, Währinger Strasse 17, A-1090 Wien, Austria
Walter Kutschera
Affiliation:
Vienna Environmental Research Accelerator, Institut für Radiumforschung und Kernphysik, Universität Wien, Währinger Strasse 17, A-1090 Wien, Austria
Alfred Priller
Affiliation:
Vienna Environmental Research Accelerator, Institut für Radiumforschung und Kernphysik, Universität Wien, Währinger Strasse 17, A-1090 Wien, Austria
Peter Steier
Affiliation:
Vienna Environmental Research Accelerator, Institut für Radiumforschung und Kernphysik, Universität Wien, Währinger Strasse 17, A-1090 Wien, Austria
Eva M Wild
Affiliation:
Vienna Environmental Research Accelerator, Institut für Radiumforschung und Kernphysik, Universität Wien, Währinger Strasse 17, A-1090 Wien, Austria
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper summarizes radiocarbon measurements of mainly botanical samples from the Iceman (“Ötzi”) and from his discovery site, an Alpine glacier at the Austrian-Italian border. The results were obtained by accelerator mass spectrometry (AMS) at 3 different laboratories (Vienna, Austria; Uppsala, Sweden; Gif-sur-Yvette, France) between 1992 and 1997. All the dates, except 2, are consistent with the time period 3360–3100 BC, as previously determined from bone and tissue samples from the Iceman himself. The 2 exceptional dates from wooden artifacts suggest that the site of the Iceman was used as a mountain pass for millennia prior to and after the lifetime of “Ötzi”.

For a 2nd sample complex, we studied logs from the beginning of salt mining in the world's oldest salt mines at Hallstatt in Upper Austria. 14C AMS measurements were performed in Vienna on spruce samples found in the prehistoric mines and from a log-house on the surface. Data evaluation included “wiggle matching” of different sets of tree rings. The results suggest that salt mining in the Hallstatt region took place in the 14th–13th century BC, well before the so-called Hallstatt period.

We discuss in some detail the chemical pretreatment of the samples and the data evaluation. We also present a comprehensive survey of 14C dates available in the literature concerning both botanical remains from the vicinity of the Iceman and from the earliest salt mining in Hallstatt.

Type
Articles
Copyright
Copyright © The American Journal of Science 

References

Arnold, M, Bard, E, Maurice, P, Duplessy, C. 1987. 14C dating with the Gif-sur-Yvette Tandetron accelerator: status report. Nuclear Instruments and Methods in Physics Research B29:120–3.Google Scholar
Bagolini, B, Dal Ri, L, Lippert, A, Nothdurfter, H. 1995. Der Mann im Eis: Die Fundbergung 1992 am Tisenjoch, Gem. Schnals, Südtirol. In: Spindler, K, Rastbichler-Zissernig, E, Wilfing, H, zur Nedden, D, Nothdurfter, H, editors. Der Mann im Eis: Neue Funde und Ergebnisse (The Man in the Ice, Volume 2). Wien and New York: Springer-Verlag. p 3–52.CrossRefGoogle Scholar
Bahn, BG, Everett, K. 1993. Iceman in the cold light of day. Nature 362, 4 Mar:11–2.Google Scholar
Barfield, L. 1994. The Iceman reviewed. Antiquity 68: 1026.CrossRefGoogle Scholar
Barth, FE, Felber, H, Schauberger, O. 1974. Radiokohlen-stoffdatierung der prähistorischen Baue in den Salzbergwerken Hallstatt und Dürrnberg-Hallein. Mitteilungen der Anthropologischen Gesellschaft in Wien 105:45–52.Google Scholar
Barth, FE. 1993. Der urzeitliche Bergbau im Grüner Werk des Salzbergwerkes Hallstatt. In: Austria Salinen, editors. Ausstellung Grüner Werk 1986. 2nd ed. Verlag des Musealvereines Hallstatt. p 1–32.Google Scholar
Barth, FE, Neubauer, W. 1993. Salzbergwerk Hallstatt - Appoldwerk - Grabung 1879/80. In: Austria Salinen, editors. Appoldwerk Grabung 1879/80. 2nd ed. Verlag des Musealvereines Hallstatt. p 3–53.Google Scholar
Barth, FE. 1993–94. Ein Füllort des 12. Jahrhunderts v. Chr. im Hallstätter Salzberg. Mitteilungen der Anthropologischen Gesellschaft in Wien (MAGW) 123/124: 2738.Google Scholar
Beckel, L, Harl, O. 1983. Archäologie in Österreich. Salzburg and Vienna: Residenzverlag. (Reprint by Tosa Verlag, Vienna 1996). p 151–5.Google Scholar
Bonani, G, Ivy, S, Niklaus, TR, Suter, M, Housley, MA, Bronk, CR, van Klinken, GJ, Hedges, REM. 1992. Altersbestimmung von Milligrammproben der Ötztaler Gletscherleiche mit der Beschleuniger-Massenspektrometrie-Methode (AMS). In: Höpfel, F, Platzer, W, Spindler, K, editors. Der Mann im Eis 1. Report of the 1992 International Symposium in Innsbruck, Publications of the University of Innsbruck 187. 2nd rev ed. Eigenverlag der Universität Innsbruck. p 108–16.Google Scholar
Bonani, G, Ivy, S, Hajdas, I, Niklaus, TR, Suter, M. 1994. AMS 14C age determinations of tissue, bone and grass samples from the Ötztal Ice Man. Radiocarbon 36(2): 247–50.CrossRefGoogle Scholar
Bortenschlager, S, Kofler, W, Oeggl, K, Schoch, W. 1992. Erste Ergebnisse der Auswertung der vegetabilischen Reste vom Hauslabjochfund. In: Höpfel, F, Platzer, W, Spindler, K, editors. Der Mann im Eis 1. Report of the 1992 International Symposium in Innsbruck, Publications of the University of Innsbruck 187. 2nd rev ed. Eigenverlag der Universität Innsbruck. p 307–12.Google Scholar
Coghlan, A. 1992. Ötze: the man who came in from the cold. New Scientist, 11 Jan: 17–8.Google Scholar
Donahue, DJ, Linick, TW, Jull, AJT. 1990a. Isotope-ratio and background corrections for accelerator mass spectrometry radiocarbon measurements. Radiocarbon 32(2):135–42.CrossRefGoogle Scholar
Donahue, DJ, Jull, AJT, Toolin, LJ. 1990b. Radiocarbon measurements at the University of Arizona AMS facility. Nuclear Instruments and Methods in Physics Research B52:224–8.Google Scholar
Egg, M. 1992. Zur Ausrüstung des Toten vom Hauslabjoch, Gem. Schnals (Südtirol). In: Höpfel, F, Platzer, W, Spindler, K, editors. Der Mann im Eis 1. Report of the 1992 International Symposium in Innsbruck, Publications of the University of Innsbruck 187. 2nd rev ed. Eigenverlag der Universität Innsbruck. p 254–72.Google Scholar
Egg, M, Spindler, K. 1992. Die Gletschermumie vom Ende der Steinzeit aus den Ötztaler Alpen– Vorbericht. Jahrbuch des Römisch-Germanischen Zentralmuseums Mainz 39(1):1–114.Google Scholar
Felber, H. 1973. Altersbestimmungen nach der Radio-kohlenstoffmethode am Institut für Radiumforschung und Kernphysik IX. Anzeiger-Österreichische Akademie der Wissenschaften–Mathematisch-naturwissen-schaftliche Klasse 110(1–13):57–65.Google Scholar
Hedges, REM, Housley, RA, Bronk, CR, van Klinken, GJ. 1992. Radiocarbon dates from the Oxford AMS system: Archaeometry datelist 15. Archaeometry 34(2): 337–57.Google Scholar
Jaroff, L. 1992. Iceman. Time Magazine, Oct 26:62–6.Google Scholar
Kutschera, W, Collon, P, Friedmann, H, Golser, R, Hille, P, Priller, A, Rom, W, Steier, P, Tagesen, S, Wallner, A, Wild, E, Winkler, G. 1997. VERA: A new AMS facility in Vienna. Nuclear Instruments and Methods in Physics Research B123:47–50.Google Scholar
Kutschera, W, Golser, R, Priller, A, Rom, W, Steier, P, Wild, E, Arnold, M, Tisnerat-Laborde, N, Possnert, G, Bortenschlager, S, Oeggl, K. Radiocarbon dating of equipment from the Iceman. In: Bortenschlager, S, Oeggl, K, editors. The Iceman and His Natural Environment. The Man in the Ice 4. Vienna: Springer Verlag. Forthcoming.Google Scholar
Lippert, A. 1985. Reclams Archäologieführer Österreich und Südtirol. Stuttgart: Philipp Reclam jun.. p 223–30.Google Scholar
Lippert, A. 1992. Die erste archäologische Nachuntersuchung am Tisenjoch. In: Höpfel, F, Platzer, W, Spindler, K, editors. Der Mann im Eis 1. Report of the 1992 International Symposium in Innsbruck, Publications of the University of Innsbruck 187. 2nd rev ed. Eigenverlag der Universität Innsbruck. 245–53.Google Scholar
Martin, BR. 1971. Statistics for physicists. London and New York: Academic Press. p 55–61.Google Scholar
Mook, WG, Streurman, HJ. 1983. Physical and chemical aspects of radiocarbon dating. In: Mook, WG, Waterbolk, HAT, editors. PACT 8: Proceedings of the First International Symposium 14 C and Archaeology, Groningen 1981. p 3155.Google Scholar
Oeggl, K. 1995. Neolithic plant remains discovered together with a mummified corpse (“Homo tyrolensis”) in the Tyrolean Alps. In: Kroll, H, Pasternak, R, editors. Res archaeobotanicae – 9th Symposium IWGP. Kiel. p 229–38.Google Scholar
Possnert, G. 1984. AMS with the Uppsala EN tandem accelerator. Nuclear Instruments and Methods in Physics Research B5: 5961.Google Scholar
Priller, A, Golser, R, Hille, P, Kutschera, W, Rom, W, Steier, P, Wallner, A. Wild, E. 1997. First performance tests of VERA. Nuclear Instruments and Methods in Physics Research B123:193–8.Google Scholar
Prinoth-Fornwagner, R, Niklaus, TR. 1994. The man in the ice: results from radiocarbon dating. Nuclear Instruments and Methods in Physics Research B92:282–90.Google Scholar
Ramsey, CB. 1995a. Radiocarbon calibration and analysis of stratigraphy: the OxCal program. Radiocarbon 37(2):425–30.Google Scholar
Roberts, D, Garrett, K, Harlin, G. 1993. The Iceman. National Geographic, June:3667.Google Scholar
Rom, W, Golser, R, Kutschera, W, Priller, A, Steier, P, Wild, E. 1998. Systematic investigations of 14C measurements at the Vienna Environmental Research Accelerator (VERA). Radiocarbon 40(1):255–64.Google Scholar
Schauberger, O. 1960. Ein Rekonstruktionsversuch der prähistorischen Grubenbaue im Hallstätter Salzberg. Prähistorische Forschungen 5:1–15.Google Scholar
Spindler, K. 1993. Der Mann im Eis. München: C. Bertelsmann Verlag GmbH. p 81–5, 93–6.Google Scholar
Stuiver, M, Robinson, SW. 1974. University of Washington Geosecs North Atlantic carbon-14 results. Earth and Planetary Science Letters 23:87–90.CrossRefGoogle Scholar
Stuiver, M, Polach, HA. 1977. Discussion: reporting of 14C data. Radiocarbon 19(3):355–63.CrossRefGoogle Scholar
Stuiver, M, Reimer, PJ, Bard, E, Beck, JW, Burr, GS, Hughen, KA, Kromer, B, McCormac, G, van der Plicht, J, Spurk, M. 1998. INTCAL98 radiocarbon age calibration, 24,000-0 cal BP. Radiocarbon 40(3): 1041–83.CrossRefGoogle Scholar
Urban, O. 1989. Wegweiser in die Urgeschichte Österreichs. Vienna: Österreichischer Bundesverlag. p 156–63.Google Scholar
Vogel, JS, Southon, JR, Nelson, DE, Brown, TA. 1984. Performance of catalytically condensed carbon for use in accelerator mass spectrometry. Nuclear Instruments and Methods in Physics Research B5:289–93.Google Scholar
Vogel, JS, Nelson, DE, Southon, JR. 1987. 14C background levels in an accelerator mass spectrometry system. Radiocarbon 29:323–33.CrossRefGoogle Scholar
Ward, GK, Wilson, SR. 1978. Procedures for comparing and combining radiocarbon age determinations: a critique. Archaeometry 20(1): 1931.CrossRefGoogle Scholar
Wild, E, Golser, R, Hille, P, Kutschera, W, Puchegger, S, Priller, A, Rom, W, Steier, P, Vycudilik, W. 1998. First 14C results from archaeological and forensic studies at the Vienna Environmental Research Accelerator. Radiocarbon 40(1):273–82.Google Scholar