Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-11T06:56:29.649Z Has data issue: false hasContentIssue false

Radiocarbon Dating Cremated Bone: A Case Study Comparing Laboratory Methods

Published online by Cambridge University Press:  28 June 2019

Helene Agerskov Rose*
Affiliation:
Center for Baltic and Scandinavian Archaeology (ZBSA), Schleswig-Holstein State Museums Foundation, Schlossinsel 1, Schleswig 24837, Germany
John Meadows
Affiliation:
Center for Baltic and Scandinavian Archaeology (ZBSA), Schleswig-Holstein State Museums Foundation, Schlossinsel 1, Schleswig 24837, Germany Christian-Albrechts-Universitaet zu Kiel, Leibniz-Labor für Altersbestimmung und Isotopenforschung, Kiel, Germany
Sanne W L Palstra
Affiliation:
University of Groningen, Center for Isotope Research, Groningen, The Netherlands
Christian Hamann
Affiliation:
Christian-Albrechts-Universitaet zu Kiel, Leibniz-Labor für Altersbestimmung und Isotopenforschung, Kiel, Germany
Mathieu Boudin
Affiliation:
Royal Instiute for Cultural Heritage, Laboratory for Radiocarbon Dating, Brussels, Belgium
Matthias Huels
Affiliation:
Christian-Albrechts-Universitaet zu Kiel, Leibniz-Labor für Altersbestimmung und Isotopenforschung, Kiel, Germany
*
*Corresponding author. Email: helene.rose@zbsa.eu.

Abstract

Radiocarbon (14C) results on cremated bone are frequently published in high-ranking journals, but 14C laboratories employ different pretreatment methods as they have divergent perceptions of what sources of contaminants might be present. We found pretreatment protocols to vary significantly between three laboratories (Brussels [RICH], Kiel [KIA], and Groningen [CIO]), which all have a long history of dating cremated bone. We present a case study of 6 sets of replicate dates, to compare laboratory pretreatment protocols, and a further 16 sets of inter-laboratory replicate measurements, which compare specific steps of the conversion and measuring process. The 14C results showed dates to be reproducible between the laboratories and consistent with the expected archaeological chronology. We found that differences in pretreatment, conversion to CO2 and accelerator mass spectrometry (AMS) measurement to have no measurable influence on the majority of obtained results, suggesting that any possible diagenesis was probably restricted to the most soluble ≤5% of each sample, as this proportion of the sample mass was removed under all laboratory protocols.

Type
Conference Paper
Copyright
© 2019 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Selected Papers from the 23rd International Radiocarbon Conference, Trondheim, Norway, 17–22 June, 2018

References

REFERENCES

Becker, CJ. 1961. Førromersk jernalder i Syd- og Midtjylland. Kbh.: Nationalmuseet.Google Scholar
Boudin, M, Van Strydonck, M, van den Brande, T, Synal, H-A, Wacker, L. 2015. RICH – A new AMS facility at the Royal Institute for Cultural Heritage, Brussels, Belgium. Nuclear Instruments and Methods in Physics Research B 361:120123.CrossRefGoogle Scholar
Bronk Ramsey, C. 1995. Radiocarbon calibration and analysis of stratigraphy: the OxCal Program. Radiocarbon 37(2):425430.10.1017/S0033822200030903CrossRefGoogle Scholar
De Mulder, G, Van Strydonck, M, Boudin, M, Leclercq, W, Paridaens, N, Warmenbol, E. 2007. Re-evaluation of the Late Bronze Age and Early Iron Age chronology of the western Belgian urnfields based on 14C dating of cremated bones. Radiocarbon 49(2):499514.10.1017/S0033822200042429CrossRefGoogle Scholar
Hüls, CM, Erlenkeuser, H, Nadeau, MJ, Grootes, PM, Andersen, N. 2010. Experimental study on the origin of cremated bone apatite carbon. Radiocarbon 52(2):587599.10.1017/S0033822200045628CrossRefGoogle Scholar
Jensen, CK. 2005. Kontekstuel kronologi: en revision af det kronologiske grundlag for førromersk jernalder i Sydskandinavien. Højbjerg: Kulturlaget.Google Scholar
Jørgensen, E. 1975. Tuernes mysterier. Skalk 1975(1):310.Google Scholar
Lanting, JN, Aerts-Bijma, AT, van der Plicht, J. 2001. Dating of cremated bones. Radiocarbon 43(2A):249254.CrossRefGoogle Scholar
Lindroos, A, Heinemeier, J, Ringbom, Å, Braskén, M, Sveinbjörnsdóttir, Á. 2007. Mortar dating using AMS 14C and sequential dissolution: examples from medieval, non-hydraulic lime mortars from the Åland Islands, SW Finland. Radiocarbon 49(1):4767.10.1017/S0033822200041898CrossRefGoogle Scholar
Lorange, T. 2015. Det sakrale landskab ved Årre. Landskabets hukommelse gennem 4.000 års gravriter. In: Foss, P, Møller, NA, editors. De dødes landskab. Grav og gravskik i ældre jernalder i Danmark. Ribe: SAXO-instituttet, Københavns Universitet. p. 2136.Google Scholar
Nadeau, MJ, Grootes, PM, Schleicher, M, Hasselberg, P, Rieck, A, Bitterling, M. 1997. Sample throughput and data quality at the Leibniz-Labor AMS Facility. Radiocarbon 40(1):239445.CrossRefGoogle Scholar
Naysmith, P, Scott, EM, Cook, GT, Heinemeier, J, Van der Plicht, J, Van Strydonck, M, Bronk Ramsey, C, Grootes, PM, Freeman, SPHT. 2007. A cremated bone intercomparison study. Radiocarbon 49(2):403408.CrossRefGoogle Scholar
Olsen, J, Heinemeier, J, Bennike, P, Krause, C, Margrethe Hornstrup, K, Thrane, H. 2008. Characterisation and blind testing of radiocarbon dating of cremated bone. Journal of Archaeological Science 35(3):791800.10.1016/j.jas.2007.06.011CrossRefGoogle Scholar
Olsen, J, Heinemeier, J, Hornstrup, KM, Bennike, P, Thrane, H. 2013. “Old wood” effect in radiocarbon dating of prehistoric cremated bones? Journal of Archaeological Science 40(1):3034.CrossRefGoogle Scholar
Person, A, Bocherens, H, Saliège, J-F, Paris, F, Zeitoun, V, Gérard, M. 1995. Early diagenetic evolution of bone phosphate: an x-ray diffractometry analysis. Journal of Archaeological Science 22(2):211221.10.1006/jasc.1995.0023CrossRefGoogle Scholar
Scheele, E. 2016. The Wapse urnfield revisited: the search for groups of urnfield users (prov. Drenthe, The Netherlands). LUNULA. Archaeologia Protohistorica XXIV(2016):8190.Google Scholar
Snoeck, C, Brock, F, Schulting, RJ. 2014. Carbon exchanges between bone apatite and fuels during cremation: impact on radiocarbon dates. Radiocarbon 56(2):591602.CrossRefGoogle Scholar
Snoeck, C, Schulting, RJ, Lee-Thorp, JA, Lebon, M, Zazzo, A. 2016. Impact of heating conditions on the carbon and oxygen isotope composition of calcined bone. Journal of Archaeological Science 65:3243.CrossRefGoogle Scholar
Stuiver, M, Polach, HA. 1977. Discussion: reporting of 14C data. Radiocarbon 19(3):355363.10.1017/S0033822200003672CrossRefGoogle Scholar
Terkildsen, KF. 2015. Gravpladsen Årupgård som kilde til social stratifikation i førromersk jernalder. In: Foss, P, Møller, NA, editors. De dødes landskab. Grav og gravskik i ældre jernalder i Danmark. Ribe. p. 5170.Google Scholar
Van Strydonck, M, Boudin, M, Hoefkens, M, De Mulder, G. 2005. 14C-dating of cremated bones, why does it work? Lunula. Archaeologia Protohistorica XIII:310.Google Scholar
Van Strydonck, M, Boudin, M, De Mulder, G. 2009. 14C dating of cremated bones: the issue of sample contamination. Radiocarbon 51(2):553568.CrossRefGoogle Scholar
Van Strydonck, M, Boudin, M, Mulder, GD. 2010. The carbon origin of structural carbonate in bone apatite of cremated bones. Radiocarbon 52(2):578586.CrossRefGoogle Scholar
Ward, GK, Wilson, SR. 1978. Procedures for comparing and combining radiocarbon age determinations: a critique. Archaeometry 20(1):1931.CrossRefGoogle Scholar
Wijma, S, Aerts, AT, van der Plicht, J, Zondervan, A. 1996. The Groningen AMS facility. Nuclear Instruments and Methods in Physics Research B 113:465469.CrossRefGoogle Scholar
Zazzo, A, Saliège, JF, Person, A, Boucher, H. 2009. Radiocarbon dating of calcined bones: where does the carbon come from? Radiocarbon 51(2):601611.10.1017/S0033822200055958CrossRefGoogle Scholar
Zazzo, A, Saliège, J-F, Lebon, M, Lepetz, S, Moreau, C. 2012. Radiocarbon dating of calcined bones: insights from combustion experiments under natural conditions. Radiocarbon 54(3–4):855866.CrossRefGoogle Scholar
Supplementary material: File

Agerskov Rose et al. supplementary material

Appendix 1

Download Agerskov Rose et al. supplementary material(File)
File 14.8 KB
Supplementary material: File

Agerskov Rose et al. supplementary material

Appendix 2

Download Agerskov Rose et al. supplementary material(File)
File 23 KB