Hostname: page-component-7f64f4797f-6fdxz Total loading time: 0 Render date: 2025-11-11T15:31:20.395Z Has data issue: false hasContentIssue false

Highlighting the value of selecting terrestrial snails for radiocarbon dating based on French Holocene archaeological sites

Published online by Cambridge University Press:  09 October 2025

Sophie Martin*
Affiliation:
Inrap Cellule Économie Végétale et Environnement (CEVE), Direction scientifique et technique, 121 rue d’Alésia, F-75685 Paris, France ASM Archéologie des Sociétés Méditerranéennes, UMR 5140, CNRS, Université Paul-Valéry Montpellier 3, site de Saint-Charles, rue du Professeur Henri Serre, F-34199 Montpellier, France Labex ARCHIMEDE, ANR-11-LABX-0032-01, Université Paul-Valéry Montpellier 3, Route de Mende, F-34199 Montpellier Cedex 05, France
Isabel Figueiral
Affiliation:
Inrap Cellule Économie Végétale et Environnement (CEVE), Direction scientifique et technique, 121 rue d’Alésia, F-75685 Paris, France ISEM, UMR 5554, CNRS, IRD, EPHE, Université de Montpellier, Place Eugène Bataillon, F-34090 Montpellier Cedex 5, France
Benoît Devillers
Affiliation:
ASM Archéologie des Sociétés Méditerranéennes, UMR 5140, CNRS, Université Paul-Valéry Montpellier 3, site de Saint-Charles, rue du Professeur Henri Serre, F-34199 Montpellier, France Labex ARCHIMEDE, ANR-11-LABX-0032-01, Université Paul-Valéry Montpellier 3, Route de Mende, F-34199 Montpellier Cedex 05, France
Christophe Jorda
Affiliation:
ASM Archéologie des Sociétés Méditerranéennes, UMR 5140, CNRS, Université Paul-Valéry Montpellier 3, site de Saint-Charles, rue du Professeur Henri Serre, F-34199 Montpellier, France Labex ARCHIMEDE, ANR-11-LABX-0032-01, Université Paul-Valéry Montpellier 3, Route de Mende, F-34199 Montpellier Cedex 05, France Inrap Midi-Méditerranée, 561 rue Etienne Lenoir, F-30900 Nîmes, France
Pascale Chevillot
Affiliation:
ASM Archéologie des Sociétés Méditerranéennes, UMR 5140, CNRS, Université Paul-Valéry Montpellier 3, site de Saint-Charles, rue du Professeur Henri Serre, F-34199 Montpellier, France Inrap Midi-Méditerranée, 561 rue Etienne Lenoir, F-30900 Nîmes, France
Frédéric Magnin
Affiliation:
Aix Marseille Univ, Avignon Univ, CNRS, IRD, IMBE, Technopôle de l’Environnement Arbois-Méditerranée, BP 80, 13545 Aix‑en‑Provence Cedex 4, France
*
Corresponding author: Sophie Martin; Email: sophie.martin@inrap.fr

Abstract

Land snail shells are usually avoided for radiocarbon dating, due to the possible presence of dead carbon, although measurements on certain small species can be reliable. However, terrestrial gastropods, which are often abundant and well preserved in favorable sedimentary contexts, may represent an important source of material for precise dating. In this study, the shell selection method and radiocarbon results are presented, based on about twenty dates, from well-known and reliable archaeological contexts mostly from the Languedoc (southern France) and covering different cultural periods of the Holocene. Chronological controls are provided by dates based on plant remains, archaeological artifacts and stratigraphy, as well as geomorphological and environmental interpretations. The results obtained based on gastropod shells show a good agreement with the expected dates. In some examples, the target period is quite large, making it difficult to determine the degree of accuracy. However, other tests give perfectly synchronous dates between botanical or archaeological material and mollusks. Species selection takes into account that terrestrial gastropods living in the midst of vegetation are less likely to ingest fossil carbon and are therefore better suited for dating, especially wetland species, Succinella oblonga and Vertigo pygmaea. These promising results show the potential of terrestrial shells for dating archaeological sequences when prevailing biological material such as charcoal is lacking or is unreliable.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of University of Arizona

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Abbé, J-L (2006) À la conquête des étangs : l’aménagement de l’espace en Languedoc méditerranéen, XIIe–XVe siècle. Toulouse: Presses universitaires du Mirail.10.4000/books.pumi.10635CrossRefGoogle Scholar
Alexandrowicz, WP (2022) Molluscan assemblages in sediments of a landslide on Majerz Hill near Niedzica (Inner Carpathians, Southern Poland) – phases of development and environmental changes. Geol Geophys Environ 48(1), 5168. https://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-daa219e9-6095-42bf-94df-ed92044e5a94 10.7494/geol.2022.48.1.51CrossRefGoogle Scholar
Allen, MJ, Jones, AM and Walker, T (2020) Archaeological investigations at Godrevy, Gwithian 2019: Implications from geophysical survey and auger coring. Cornish Archaeology 59, 197209. https://cornisharchaeology.org.uk/app/uploads/2022/09/197-210-Allen-Jones-Walker.pdf Google Scholar
Andrieu-Ponel, V, Ponel, P, Bruneton, H, Leveau, P and de Beaulieu, J-L (2000) Palaeoenvironments and cultural landscapes of the last 2000 years reconstructed from pollen and Coleopteran records in the Lower Rhône Valley, southern France. The Holocene 10(3), 341355. https://doi.org/10.1191/095968300669147926 CrossRefGoogle Scholar
Badie, A and Rondelaud, D (1985) Contribution à l’étude expérimentale de la prédation de Cionella lubrica Müller par Nesovitrea hammonis Ström. Annales de Recherches Vétérinaires 16, 105109.Google Scholar
Baldreki, C, Burnham, A, Conti, M, Wheeler, L, Simms, MJ, Barham, L, White, TS and Penkman, K (2024) Investigating the potential of African land snail shells (Gastropoda: Achatininae) for amino acid geochronology. Quat Geochronol 79, 101473. https://doi.org/10.1016/j.quageo.2023.101473 CrossRefGoogle Scholar
Barker, GM (2001) Gastropods on land: Phylogeny, diversity and adaptive morphology. In: The Biology of Terrestrial Molluscs. Oxon: CABI Publishing, 1146.10.1079/9780851993188.0000CrossRefGoogle Scholar
Barker, GM and Efford, MG (2004) Predatory gastropods as natural enemies of terrestrial gastropods and other invertebrates. In Barker, GM (ed), Natural Enemies of Terrestrial Molluscs. 1st ed. UK: CABI Publishing, 279403. http://www.cabidigitallibrary.org/doi/10.1079/9780851993195.0279 CrossRefGoogle Scholar
Bird, MI (2013) Radiocarbon dating – Charcoal. In: Encyclopedia of Quaternary Science. Elsevier, 353360. https://linkinghub.elsevier.com/retrieve/pii/B9780444536433000479 10.1016/B978-0-444-53643-3.00047-9CrossRefGoogle Scholar
Brennan, R and Quade, J (1997) Reliable Late-Pleistocene stratigraphic ages and shorter groundwater travel times from 14C in fossil snails from the Southern Great Basin. Quaternary Research 47(3), 329336. https://doi.org/10.1006/qres.1997.1895.CrossRefGoogle Scholar
Briard, J and Mohen, J-P (1983) Typologie des objets de l’âge du Bronze en France. Fascicule II : Poignards, hallebardes, pointes de lance, pointes de flèche, armement défensif. Paris: Société préhistorique française.Google Scholar
Brock, F, Higham, T, Ditchfield, P and Bronk Ramsey, C (2010) Current pretreatment methods for AMS radiocarbon dating at the Oxford Radiocarbon Accelerator Unit (ORAU). Radiocarbon 52(1), 103112. https://doi.org/10.1017/S0033822200045069.CrossRefGoogle Scholar
Bronk Ramsey, C (2009) Bayesian analysis of radiocarbon dates. Radiocarbon 51(1), 337360. https://doi.org/10.1017/S0033822200033865.CrossRefGoogle Scholar
Bruxelles, L, Pons, F, Magnin, F and Bertrand, A (2010) Âges et modalités de la mise en place de la couverture limoneuse de la basse plaine de la Garonne d’après l’exemple du site de Fontréal (Castelnau-d’Estrétefonds, Haute Garonne). Quaternaire 21(4), 475484. https://doi.org/10.4000/quaternaire.5795.CrossRefGoogle Scholar
Burleigh, R and Kerney, MP (1982) Some chronological implications of a fossil molluscan assemblage from a Neolithic site at Brook, Kent, England. Journal of Archaeological Science 9(1), 2938. https://doi.org/10.1016/0305-4403(82)90004-8.CrossRefGoogle Scholar
Bush, SL, Santos, GM, Xu, X, Southon, JR, Thiagarajan, N, Hines, SK and Adkins, JF (2013) Simple, rapid, and cost effective: A screening method for 14C analysis of small carbonate samples. Radiocarbon 55(2), 631640. https://doi.org/10.1017/S0033822200057787.CrossRefGoogle Scholar
Cameron, RAD, Colville, B, Falkner, G, Holyoak, GA, Hornung, E, Killeen, IJ, Moorkens, EA, Pokryszko, BM, Von Proschwitz, T and Tattersfield, P (2003) Species accounts for snails of the genus Vertigo listed in Annex II of the Habitats Directive: V. angustior, V. genesii, V. geyeri and V. moulinsiana (Gastropoda, Pulmonata: Vertiginidae). Heldia 5(7), 151170.Google Scholar
Carcaillet, C (2001a) Are Holocene wood-charcoal fragments stratified in alpine and subalpine soils? Evidence from the Alps based on AMS 14C dates. The Holocene 11(2), 231242. https://doi.org/10.1191/095968301674071040.CrossRefGoogle Scholar
Carcaillet, C (2001b) Soil particles reworking evidences by AMS 14C dating of charcoal. Comptes Rendus Académie Sci-Ser IIA-Earth Planet Sci 332(1), 2128. https://doi.org/10.1016/S1251-8050(00)01485-3.Google Scholar
Carcaillet, C and Talon, B (1996) Aspects taphonomiques de la stratigraphie et de la datation de charbons de bois dans les sols : exemple de quelques sols des Alpes. Géographie Physique et Quaternaire 50(2), 233. https://doi.org/10.7202/033091ar.CrossRefGoogle Scholar
Chrzavzez, J (2013) Approche expérimentale de la conservation des charbons de bois dans les gisements paléolithiques : processus post-dépositionnels, fragmentation et représentativité des assemblages anthracologiques. PhD thesis. Nice: UFR Lettres, Art, Sciences Humaines et Sociales, Université Nice Sophia Antipolis. https://tel.archives-ouvertes.fr/tel-00948324 Google Scholar
Compan, M, dir. (2006) Pézenas - Tourbes (Hérault), Secteur 11 - Bonne terre, Autoroute A75 Section Béziers-Pézenas. Nîmes: Inrap Méditerranée (Rapport final d’opération de diagnostic archéologique).Google Scholar
Czernik, J and Goslar, T (2001) Preparation of graphite targets in the Gliwice Radiocarbon Laboratory for AMS 14C dating. Radiocarbon 43(2A), 283291. https://doi.org/10.1017/S0033822200038121.CrossRefGoogle Scholar
Davies, P (2008) Snails: Archaeology and Landscape Change. Oxford: Oxbow Books.Google Scholar
Dee, M and Bronk Ramsey, C (2000) Refinement of graphite target production at ORAU. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 172(1–4), 449453. https://doi.org/10.1016/S0168-583X(00)00337-2.CrossRefGoogle Scholar
Dee, MW, Palstra, SWL, Aerts-Bijma, AT, Bleeker, MO, de Bruijn, S, Ghebru, F, Jansen, HG, Kuitems, M, Paul, D, Richie, RR et al. (2020) Radiocarbon dating at Groningen: New and updated chemical pretreatment procedures. Radiocarbon 62(1), 6374. https://doi.org/10.1017/RDC.2019.101.CrossRefGoogle Scholar
Dincauze, DF (1987) Strategies for paleoenvironmental reconstruction in archaeology. In: Advances in Archaeological Method and Theory, Vol. 11. Elsevier, 255336. https://doi.org/10.1016/B978-0-12-003111-5.50008-7.CrossRefGoogle Scholar
Dominguez, JG, Kosnik, MA, Allen, AP, Hua, Q, Jacob, DE, Kaufman, DS and Whitacre, K (2016) Time-averaging and stratigraphic resolution in death assemblages and Holocene deposits: Sydney Harbour’s molluscan record. Palaios 31(11), 563574. https://doi.org/10.2110/palo.2015.087.CrossRefGoogle Scholar
Evans, JG (1969) Land and freshwater Mollusca in archaeology: Chronological aspects. World Archaeology 1(2), 170183. https://doi.org/10.1080/00438243.1969.9979437.CrossRefGoogle Scholar
Evans, JG (1972) Land Snails in Archaeology: With Special Reference to the British Isles. London and New York: Seminar Press (Studies in Archaeological Science).Google Scholar
Evin, J, Marechal, J, Pachiaudi, C and Puisségur, JJ (1980) Conditions involved in dating terrestrial shells. Radiocarbon 22(2), 545555. https://doi.org/10.1017/S0033822200009875.CrossRefGoogle Scholar
Forman, SL, Hockaday, W, Liang, P and Ramsey, A (2021) Radiocarbon age offsets, ontogenetic effects, and potential old carbon contributions from soil organic matter for pre-bomb and modern detritivorous gastropods from central Texas, USA. Palaeogeography, Palaeoclimatology, Palaeoecology 583, 110671. https://doi.org/10.1016/j.palaeo.2021.110671.CrossRefGoogle Scholar
Fossurier, C, dir. (2018) Des tombes de Lux: Tumulus, monuments funéraires des âges des métaux et fréquentation humaine du Mésolithique au Moyen Âge. Lux, Sous la Chaignée, La Sablière (Côte-d’Or), Gazoduc, Val de Saône. Dijon: Inrap Bourgogne Franche-Comté (Rapport d’opération de fouille archéologique).Google Scholar
Gabillot, M (2003) Dépôts et production métallique du Bronze moyen en France nord-occidentale. Oxford: Archaeopress (BAR International Series 1174).10.30861/9781841715421CrossRefGoogle Scholar
Gavin, DG (2001) Estimation of inbuilt age in radiocarbon ages of soil charcoal for fire history studies. Radiocarbon 43(1), 2744. https://doi.org/10.1017/S003382220003160X.CrossRefGoogle Scholar
Goodfriend, GA (1987) Radiocarbon age anomalies in shell carbonate of land snails from semi-arid areas. Radiocarbon 29(2), 159167. https://doi.org/10.1017/S0033822200056915.CrossRefGoogle Scholar
Goodfriend, GA (1992a) The use of land snail shells in paleoenvironmental reconstruction. Quaternary Science Reviews 11(6), 665685. https://doi.org/10.1016/0277-3791(92)90076-K.CrossRefGoogle Scholar
Goodfriend, GA (1992b) Rapid racemization of aspartic acid in mollusc shells and potential for dating over recent centuries. Nature 357(6377), 399401. https://doi.org/10.1038/357399a0.CrossRefGoogle Scholar
Goodfriend, GA, Ellis, GL and Toolin, LJ (1999) Radiocarbon age anomalies in land snail shells from Texas: Ontogenetic, individual, and geographic patterns of variation. Radiocarbon 41(2), 149156. https://doi.org/10.1017/S0033822200019500.CrossRefGoogle Scholar
Goodfriend, GA and Hood, DG (1983) Carbon isotope analysis of land snail shells: Implications for carbon sources and radiocarbon dating. Radiocarbon 25(3), 810830. https://doi.org/10.1017/S0033822200006226.CrossRefGoogle Scholar
Goodfriend, GA and Stipp, JJ (1983) Limestone and the problem of radiocarbon dating of land-snail shell carbonate. Geology 11(10), 575577. https://doi.org/10.1130/0091-7613(1983)11<575:LATPOR>2.0.CO;2.2.0.CO;2>CrossRefGoogle Scholar
Granai, S and Wackenheim, C (2022) La datation radiocarbone sur coquilles de mollusques terrestres: Quelles limites et quels usages? In: Mesurer le temps de l’âge du Bronze, Journée thématique de l’APRAB (Saint-Germain-en-Laye, 6 mars 2020). Supplément n°8. Dijon: Bulletin de l’Association pour la Promotion des Recherches sur l’Âge du Bronze, 2133.Google Scholar
Grimley, DA, Counts, RC, Conroy, JL, Wang, H, ‘Dendy, SN and Nield, CB (2020) Last glacial maximum ecology and climate from terrestrial gastropod assemblages in Peoria loess, western Kentucky. Journal of Quaternary Science 35(5), 650663. https://doi.org/10.1002/jqs.3206.CrossRefGoogle Scholar
Grimley, DA, Loope, HM, Jacobs, PM, Nash, TA, Dendy, SN, Conroy, JL and Curry, BB (2024) Updated chronology for Peoria Silt (loess) accumulation in Illinois and western Indiana from radiocarbon dating of terrestrial gastropod shells. Quaternary Research, 119. https://doi.org/10.1017/qua.2024.15.Google Scholar
Gu, Y, Lu, H, Hajdas, I, Haghipour, N, Zhang, H, Wu, J and Shao, K (2023) Radiocarbon dating of small snail shells in a loess–palaeosol sequence at Mangshan, central China. Catena 228, 107157. https://doi.org/10.1016/j.catena.2023.107157.CrossRefGoogle Scholar
Guilaine, J (1972) L’âge du Bronze en Languedoc occidental, Roussillon, Ariège. Paris: Éditions Klincksieck (Mémoires de la Société préhistorique française).Google Scholar
Hamilton, D (2020) Radiocarbon dating and Bayesian modelling of the Cutham and Scrubditch enclosures. In: A Biography of Power: Research and Excavations at the Iron Age “oppidum” of Bagendon, Gloucestershire (1979–2017). Oxford: Archaeopress, 347353. https://www.jstor.org/stable/jj.15135961.19.Google Scholar
Hearty, PJ and Kaufman, DS (2009) A Cerion-based chronostratigraphy and age model from the central Bahama Islands: Amino acid racemization and 14C in land snails and sediments. Quaternary Geochronology 4(2), 148159. https://doi.org/10.1016/j.quageo.2008.08.002.CrossRefGoogle Scholar
Heinz, C and Thiébault, S (1998) Characterization and palaeoecological significance of archaeological charcoal assemblages during late and post-glacial phases in southern France. Quaternary Research 50(1), 5668. https://doi.org/10.1006/qres.1998.1978.CrossRefGoogle Scholar
Heller, J (2001) Life history strategies. In Barker, GM (ed), The Biology of Terrestrial Molluscs. Oxon: CABI Publishing, 417446.Google Scholar
Hertelendi, E, Sümegi, P and Szöör, G (1992) Geochronologic and paleoclimatic characterization of Quaternary sediments in the Great Hungarian Plain. Radiocarbon 34(3), 833839. https://doi.org/10.1017/S0033822200064146.CrossRefGoogle Scholar
Hill, EA (2015) Radiocarbon dating of terrestrial molluscs in North East Libya. PhD thesis. Belfast: Queen’s University Belfast.Google Scholar
Hill, EA, Hunt, CO, Prendergast, AL and Barker, GW (2017) Radiocarbon ecology of the land snail Helix melanostoma in Northeastern Libya. Radiocarbon 59(5), 15211542. https://doi.org/10.1017/RDC.2017.49.CrossRefGoogle Scholar
Horáčková, J, Podroužková, Š and Juřičková, L (2024) Holocene transformation of natural steppe into an agricultural landscape in the Polabí and Pojizeří Lowlands, Czech Republic, based on mollusc evidence. The Holocene 34(1), 109119. doi: 10.1177/095968362312004.CrossRefGoogle Scholar
Horsáková, V, Divíšek, J, Líznarová, E, Kubíková, K, Juřičková, L and Horsák, M (2024) Alpine travellers in the Carpathians: The story of two rock-dwelling snails told by genes and fossils. Journal of Biogeography. doi: 10.1111/jbi.14793.CrossRefGoogle Scholar
Hua, Q, Levchenko, VA and Kosnik, MA (2019) Direct AMS 14C analysis of carbonate. Radiocarbon 61(5), 14311440. doi: 10.1017/RDC.2019.24.CrossRefGoogle Scholar
Jorda, C, Martin, S and Wattez, J (2019) 6500 ans d’occupation humaine entre plaine alluviale et versant: La construction des paysages du Mésolithique à la fin de l’Antiquité, sur le site du Pouget à Lavérune. In: ZAC du Pouget. Une occupation du Mésolithique à l’Antiquité tardive, Lavérune, Hérault (34), vol. 1. Nîmes: Inrap Méditerranée, 81153.Google Scholar
Juřičková, L, Horsák, M, Horáčková, J, Abraham, V and Ložek, V (2014) Patterns of land-snail succession in Central Europe over the last 15,000 years: Main changes along environmental, spatial and temporal gradients. Quaternary Science Reviews 93, 155166.10.1016/j.quascirev.2014.03.019CrossRefGoogle Scholar
Kerney, MP, Cameron, RAD and Bertrand, A (2006) Guide des escargots et limaces d’Europe. Paris: Delachaux et Niestlé.Google Scholar
Kowalewski, M, Casebolt, S, Hua, Q, Whitacre, KE, Kaufman, DS and Kosnik, MA (2018) One fossil record, multiple time resolutions: Disparate time-averaging of echinoids and mollusks on a Holocene carbonate platform. Geology 46(1), 5154.10.1130/G39789.1CrossRefGoogle Scholar
Li, T, Chen, T, Robinson, LF, Wang, M, Li, G, Liu, Y and Knowles, TDJ (2023) Early diagenetic imprints and U–Th isotope systematics of fossil land snail shells from the Chinese Loess Plateau. Quaternary Geochronology 74, 101417.10.1016/j.quageo.2022.101417CrossRefGoogle Scholar
Limondin, N (1990) Paysages et climats quaternaires par les mollusques continentaux. PhD thesis, Paris I Panthéon-Sorbonne, UFR d’Archéologie.Google Scholar
Limondin-Lozouet, N and Preece, RC (2004) Molluscan successions from the Holocene tufa of St Germain-le-Vasson, Normandy (France) and their biogeographical significance. Journal of Quaternary Science 19(1), 5571.10.1002/jqs.812CrossRefGoogle Scholar
Longepierre, S and Lardé, S (2017) L’église des Carmes et la porte du Légassieu, du XIIIe siècle à l’époque moderne. Place Albert Ier, Montpellier, Hérault (34), Occitanie. Nîmes: Inrap Méditerranée (Rapport final d’opération de fouille préventive).Google Scholar
Longepierre S and Lardé S, editors (in press) Les Carmes, la résurrection d’un quartier dans l’histoire d’une ville (Montpellier – XIIIe – XVIe siècles). Suppl. Archéologie du Midi Médiéval.Google Scholar
Magnin, F (1991) Mollusques continentaux et histoire quaternaire des milieux méditerranéens (Sud-Est de la France, Catalogne). PhD thesis, Aix-en-Provence: UFR des Sciences géographiques et de l’aménagement, Université d’Aix-Marseille II.Google Scholar
Magnin, F and Bonnet, S (2014) Une succession malacologique du Pléniglaciaire moyen et du Postglaciaire à Aix-en-Provence (France): Éléments de datation, taphonomie des assemblages et paléoenvironnements. Quaternaire 25(2), 163185. doi: 10.4000/quaternaire.7040.CrossRefGoogle Scholar
Magnin, F, Bonnet, S and Cenzon-Salvayre, C (2022) Land snail fauna and Holocene environmental changes in Mediterranean France: A digest from three representative sedimentary sequences. Quaternary Science Reviews 276, 107303. doi: 10.1016/j.quascirev.2021.107303.CrossRefGoogle Scholar
Martin, S (2014) Les analyses malacologiques des sites du Néolithique ancien de la plaine de Nîmes (Gard, France). In: Le Néolithique ancien de la plaine de Nîmes (Gard, France). Toulouse: Archives d’Écologie Préhistorique, 175190.Google Scholar
Martin, S (2020) Les paysages fréquentés par les populations préhistoriques du Mas de Mayan: Évolution de dépressions humides par l’apport de la malacologie continentale. In: Bassin du Mas de Mayan 6, Nîmes, Languedoc-Roussillon: Sols et structures en creux de la fin du Paléolithique final au Bronze ancien-Épicampaniforme. Nîmes: Inrap Méditerranée (Rapport d’opération de fouille archéologique).Google Scholar
Martin, S, Magnin, F and Kiss, L (2003) Land snails and human impact: Temporal resolution of Holocene assemblages. In: The Mediterranean World: Environment and History. Paris: Elsevier SAS, 239250.Google Scholar
Mazière, F and Compan, M (2010) Un poignard du Bronze moyen (Tourbes, Hérault). In: Organisation, espaces et peuplements en Lodévois, vallée de l’Hérault et Biterrois (Hérault) de la Protohistoire au Moyen Âge. Nîmes: Inrap Méditerranée (Axe de Recherche Collective), 268272.Google Scholar
Mazière, F, Martin, S, Jorda, C, Sendra, B and Pallier, C (2012) La place du facteur naturel dans les dynamiques d’occupation protohistoriques: L’exemple de l’étang de Pézenas (Hérault, France). In: Les plaines littorales en Méditerranée nord-occidentale: Regards croisés d’histoire, d’archéologie et de géographie de la Protohistoire au Moyen Âge. Montagnac: Éditions Monique Mergoil, 1332. https://halshs.archives-ouvertes.fr/halshs-00749628.Google Scholar
MolluscaBase eds (2025) MolluscaBase. Accessed at https://www.molluscabase.org on 2025-01-19. doi: 10.14284/448.CrossRefGoogle Scholar
Molnár, D, Sümegi, P, Fekete, I, Makó, L and Sümegi, BP (2019) Radiocarbon dated malacological records of two Late Pleistocene loess-paleosol sequences from SW-Hungary: Paleoecological inferences. Quaternary International 504, 108117.10.1016/j.quaint.2018.01.018CrossRefGoogle Scholar
Myzyk, S (2011) Contribution to the biology of ten vertiginid species. Folia Malacologica 19(2). Accessed 15 September 2024. https://bibliotekanauki.pl/articles/84447.10.2478/v10125-011-0004-9CrossRefGoogle Scholar
Nash, TA, Conroy, JL, Grimley, DA, Guenthner, WR and Curry, BB (2018) Episodic deposition of Illinois Valley Peoria silt in association with Lake Michigan Lobe fluctuations during the last glacial maximum. Quaternary Research 89(3), 739755. doi: 10.1017/qua.2017.66.CrossRefGoogle Scholar
New, E, Yanes, Y, Cameron, RAD, Miller, JH, Teixeira, D and Kaufman, DS (2019) Aminochronology and time averaging of Quaternary land snail assemblages from colluvial deposits in the Madeira Archipelago, Portugal. Quaternary Research 92(2), 483496. doi: 10.1017/qua.2019.1.CrossRefGoogle Scholar
Noret, C, Aurand, JL, Farge, A, Guerre, J, Plassot, E and Recolin, A (2010) Gisements de l’Épipaléolithique ancien, sols et structures d’habitat du Néolithique et du Bronze ancien-Épicampaniforme, chemin de l’Âge du Fer, voirie et parcellaire de la République à l’Antiquité, Mas de Mayan, Nîmes. Nîmes: Inrap Méditerranée (Rapport final d’opération de diagnostic archéologique).Google Scholar
Ortiz, JE, Torres, T, Yanes, Y, Castillo, C, Nuez, JDL, Ibáñez, M and Alonso, MR (2006) Climatic cycles inferred from the aminostratigraphy and aminochronology of Quaternary dunes and palaeosols from the eastern islands of the Canary Archipelago. Journal of Quaternary Science 21(3), 287306. doi: https://doi.org/10.1002/jqs.962.CrossRefGoogle Scholar
Padgett, A, Yanes, Y, Lubell, D and Faber, ML (2019) Holocene cultural and climate shifts in NW Africa as inferred from stable isotopes of archeological land snail shells. The Holocene 29(6), 10781093. doi: https://doi.org/10.1177/0959683619831424.CrossRefGoogle Scholar
Parker, WG, Yanes, Y, Mesa Hernández, E, Hernández Marrero, JC, Pais, J and Surge, D (2020) Scale of time-averaging in archaeological shell middens from the Canary Islands. The Holocene 30(2), 258271. doi: https://doi.org/10.1177/0959683619883.CrossRefGoogle Scholar
Perrin, T, Manen, C and Séjalon, P, eds (2014) Le Néolithique ancien de la plaine de Nîmes (Gard, France). Toulouse: Archives d’Écologie Préhistorique. doi: https://nakala.fr/10.34847/nkl.0c675041.Google Scholar
Pigati, JS, McGeehin, JP, Muhs, DR and Bettis, EA (2013) Radiocarbon dating late Quaternary loess deposits using small terrestrial gastropod shells. Quaternary Science Reviews 76, 114128. doi: https://doi.org/10.1016/j.quascirev.2013.05.013.CrossRefGoogle Scholar
Pigati, JS, McGeehin, JP, Muhs, DR, Grimley, DA and Nekola, JC (2015) Radiocarbon dating loess deposits in the Mississippi Valley using terrestrial gastropod shells (Polygyridae, Helicinidae and Discidae). Aeolian Research 16, 2533. doi: http://digitalcommons.unl.edu/usgsstaffpub/935.CrossRefGoogle Scholar
Pigati, JS, Quade, J, Shahanan, TM and Haynes, CV (2004) Radiocarbon dating of minute gastropods and new constraints on the timing of late Quaternary spring-discharge deposits in southern Arizona, USA. Palaeogeography, Palaeoclimatology, Palaeoecology 204(1), 3345. doi: https://doi.org/10.1016/S0031-0182(03)00710-7.CrossRefGoogle Scholar
Pigati, JS, Rech, JA and Nekola, JC (2010) Radiocarbon dating of small terrestrial gastropod shells in North America. Quaternary Geochronology 5, 519532. doi: https://doi.org/10.1016/j.quageo.2010.01.001.CrossRefGoogle Scholar
Pluckhahn, TJ, Rogers, JA, Hadden, CS, Jackson, K, Thompson, VD and Garland, CJ (2024) The potentials and limitations of two taxa of terrestrial snails (Polygyra spp. and Euglandina rosea) as a source material for the radiocarbon dating of indigenous shell mounds and middens in Florida, USA. Journal of Archaeological Science: Reports 57, 104680. doi: https://doi.org/10.1016/j.jasrep.2024.104680.Google Scholar
Preece, RC and Day, SP (1994) Comparison of post-glacial molluscan and vegetational successions from a radiocarbon-dated tufa sequence in Oxfordshire. Journal of Biogeography, 463478. doi: https://doi.org/10.2307/2845651.CrossRefGoogle Scholar
Preece, RC and Bridgland, DR (1999) Holywell Coombe, Folkestone: A 13,000 year history of an English Chalkland Valley. Quaternary Science Reviews 18(8–9), 10751125. doi: https://doi.org/10.1016/S0277-3791(98)00066-3.CrossRefGoogle Scholar
Puisségur, JJ (1976) Mollusques continentaux quaternaires de Bourgogne: significations stratigraphiques et climatiques, rapports avec d’autres faunes boréales de France. Dijon: Doin Éditeurs (Mémoires géologiques de l’Université de Dijon).Google Scholar
Quarta, G, Romaniello, L, D’Elia, M, Mastronuzzi, G and Calcagnile, L (2007) Radiocarbon age anomalies in pre- and post-bomb land snails from the coastal Mediterranean basin. Radiocarbon 49(2), 817826. https://doi.org/10.1017/S0033822200042697.CrossRefGoogle Scholar
Rakovan, MT, Rech, JA, Pigati, JS, Nekola, JC and Wiles, GC (2013) An evaluation of Mesodon and other larger terrestrial gastropod shells for dating late Holocene and historic alluvium in the Midwestern USA. Geomorphology 193, 4756. https://doi.org/10.1016/j.geomorph.2013.03.031.CrossRefGoogle Scholar
Rech, JA, Nekola, JC and Pigati, JS (2012) Radiocarbon ages of terrestrial gastropods extend duration of ice-free conditions at the Two Creeks forest bed, Wisconsin, USA. Quaternary Research 77(2), 289292. https://doi.org/10.1016/j.yqres.2011.11.007.CrossRefGoogle Scholar
Rech, JA, Pigati, JS, Lehmann, SB, McGimpsey, CN, Grimley, DA and Nekola, JC (2011) Assessing open-system behavior of 14C in terrestrial gastropod shells. Radiocarbon 53(2), 325335. https://doi.org/10.1017/S0033822200056587.CrossRefGoogle Scholar
Reimer, PJ, Austin, WEN, Bard, E, Bayliss, A, Blackwell, PG, Bronk Ramsey, C, Butzin, M, Cheng, H, Edwards, RL, Friedrich, M, et al. (2020) The IntCal20 Northern Hemisphere Radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62(4), 725757. https://doi.org/10.1017/RDC.2020.41.CrossRefGoogle Scholar
Rémy I (dir.) (2019) ZAC du Pouget. Une occupation du Mésolithique à l’Antiquité tardive, Lavérune, Hérault (34). Nîmes: Inrap Méditerranée (Rapport final d’opération de fouille archéologique).Google Scholar
Richard, I (2017) Témoins d’activités humaines au Mésolithique à Rouilly-Saint-Loup “Champ-Saint-Loup” (Aube). In Achard-Corompt, N, Ghesquière, E and Riquier, V (eds), Creuser au Mésolithique, Digging in the Mesolithic. Actes de la séance de la Société préhistorique française de Châlons-en-Champagne (29–30 mars 2016). Paris: Société préhistorique française. (Séances de la Société préhistorique française, 12), 115–120. https://www.prehistoire.org/offres/fileinlinesrc/515/515P434945a216de3e6a8028.pdf.Google Scholar
Rick, TC, Vellanoweth, RL and Erlandson, JM (2005) Radiocarbon dating and the “old shell” problem: Direct dating of artifacts and cultural chronologies in coastal and other aquatic regions. Journal of Archaeological Science 32(11), 16411648. https://doi.org/10.1016/j.jas.2005.05.005.CrossRefGoogle Scholar
Ritter, MDN, Erthal, F, Kosnik, MA, Coimbra, JC and Kaufman, DS (2017) Spatial variation in the temporal resolution of subtropical shallow-water molluscan death assemblages. PALAIOS 32(9), 572583. https://doi.org/10.2110/palo.2017.003.CrossRefGoogle Scholar
Robin, V, Nelle, O, Talon, B, Poschlod, P, Schwartz, D, Bal, M-C, Allée, P, Vernet, J-L and Dutoit, T (2018) A comparative review of soil charcoal data: Spatiotemporal patterns of origin and long-term dynamics of Western European nutrient-poor grasslands. The Holocene 28(8), 13131324. https://doi.org/10.1177/0959683618771496.CrossRefGoogle Scholar
Robin, V, Rickert, B-H, Nadeau, M-J and Nelle, O (2012) Assessing Holocene vegetation and fire history by a multiproxy approach: The case of Stodthagen Forest (Northern Germany). The Holocene 22(3), 337346. https://doi.org/10.1177/0959683611423687.CrossRefGoogle Scholar
Romaniello, L, Quarta, G, Mastronuzzi, G, D’Elia, M and Calcagnile, L (2008) 14C age anomalies in modern land snails shell carbonate from Southern Italy. Quaternary Geochronology 3(1), 6875. https://doi.org/10.1016/j.quageo.2007.01.006.CrossRefGoogle Scholar
Schellmann, G, Schielein, P, Burow, C and Radtke, U (2020) Accuracy of ESR dating of small gastropods from loess and fluvial deposits in the Bavarian Alpine Foreland. Quaternary International 556, 198215. https://doi.org/10.1016/j.quaint.2019.07.026.CrossRefGoogle Scholar
Séjalon, P, Noret, C and Chevillot, P (2014) Le Mas Neuf. In: Le Néolithique ancien de la plaine de Nîmes (Gard, France). Toulouse: Archives d’Écologie Préhistorique, 153172.Google Scholar
Sparks, BW (1961) The ecological interpretation of Quaternary non-marine mollusca. Proceedings of the Linnean Society of London 172(1), 7180. https://doi.org/10.1111/j.1095-8312.1961.tb00870.x.CrossRefGoogle Scholar
Speiser, B (2001) Food and feeding behaviour. The Biology of Terrestrial Molluscs. Oxon: CABI Publishing, 259288.10.1079/9780851993188.0259CrossRefGoogle Scholar
Théry-Parisot, I, Chabal, L and Chrzavzez, J (2010) Anthracology and taphonomy, from wood gathering to charcoal analysis. A review of the taphonomic processes modifying charcoal assemblages, in archaeological contexts. Palaeogeography, Palaeoclimatology, Palaeoecology 291(1–2), 142153. https://doi.org/10.1016/j.palaeo.2009.09.016.CrossRefGoogle Scholar
Thiébault, S and Vernet, J-L (1992) Végétations méditerranéennes et civilisations préhistoriques : le cas de Font-Juvénal. Bulletin de la Société Botanique de France. Actualités Botaniques 139(2–4), 441450. https://doi.org/10.1080/01811789.1992.10827119.CrossRefGoogle Scholar
Újvári, G, Molnár, M, Novothny, Á, Páll-Gergely, B, Kovács, J, Várhegyi, A (2014) AMS 14C and OSL/IRSL dating of the Dunaszekcső loess sequence (Hungary): chronology for 20 to 150 ka and implications for establishing reliable age–depth models for the last 40 ka. Quaternary Science Reviews 106, 140154. https://doi.org/10.1016/j.quascirev.2014.06.009.CrossRefGoogle Scholar
Újvári, G, Molnár, M and Páll-Gergely, B (2016) Charcoal and mollusc shell 14C-dating of the Dunaszekcső loess record, Hungary. Quaternary Geochronology 35, 4353. https://doi.org/10.1016/j.quageo.2016.05.005.CrossRefGoogle Scholar
Újvári, G, Stevens, T, Molnár, M, Demény, A, Lambert, F, Varga, G, Jull, AJT, Páll-Gergely, B, Buylaert, J-P and Kovács, J (2017) Coupled European and Greenland last glacial dust activity driven by North Atlantic climate. Proceedings of the National Academy of Sciences 114(50), E10632E10638. https://doi.org/10.1073/pnas.171265111.CrossRefGoogle Scholar
Vergély (dir.) H (2020) Bassin du Mas de Mayan 6, Nîmes, Languedoc-Roussillon : sols et structures en creux de la fin du Paléolithique final au Bronze ancien-Épicampaniforme. Nîmes: Inrap Méditerranée (Rapport d’opération de fouille archéologique).Google Scholar
Vogel, JS, Southon, JR, Nelson, DE and Brown, TA (1984) Performance of catalytically condensed carbon for use in accelerator mass spectrometry. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 5(2), 289293. https://doi.org/10.1016/0168-583X(84)90529-9.CrossRefGoogle Scholar
Wackenheim, Q, Limondin-Lozouet, N, Boudad, L and Berger, J-F (2020) Reconstructing mid-Holocene palaeoenvironmental dynamic in the Middle Atlas (Morocco) inferred from non-marine molluscs succession of the Aït Said ou Idder tufa sequence. Quaternaire 31(2), 145164. https://doi.org/10.4000/quaternaire.13783.CrossRefGoogle Scholar
Wackenheim, Q, Richter, C, Limondin-Lozouet, N, Wolf, D, García-Tortosa, FJ, Marzin, E, Hofmann, L, Dabkowski, J and Faust, D (2023) Holocene molluscan successions from southeastern Spain (Galera, Andalusia): A palaeoenvironmental framework and a palaeobiogeographic resource of the Granada UNESCO Geopark. Journal of Molluscan Studies 89(1), eyac033. https://doi.org/10.1093/mollus/eyac033.CrossRefGoogle Scholar
Welter-Schultes, FW (2012) European non-marine molluscs: A guide for species identification = Bestimmungsbuch für europäische Land- und Süsswassermollusken. First edition. Göttingen: Planet Poster Editions.Google Scholar
Wood, RE, Esmay, R, Usher, E and Fallon, S (2023) Sample preparation methods used at the Australian National University Radiocarbon facility. Radiocarbon 65(2), 573589. https://doi.org/10.1017/RDC.2022.97.CrossRefGoogle Scholar
Xu, B, Gu, Z, Han, J, Liu, Z, Pei, Y, Lu, Y, Wu, N and Chen, Y (2010) Radiocarbon and stable carbon isotope analyses of land snails from the Chinese Loess Plateau: Environmental and chronological implications. Radiocarbon 52(1), 149156. https://doi.org/10.1017/S0033822200045094.CrossRefGoogle Scholar
Xu, B, Gu, Z, Han, J, Hao, Q, Lu, Y, Wang, L, Wu, N and Peng, Y (2011) Radiocarbon age anomalies of land snail shells in the Chinese Loess Plateau. Quaternary Geochronology 6(3–4), 383389. https://doi.org/10.1016/j.quageo.2011.03.009.CrossRefGoogle Scholar
Yates, T (1986) Studies of non-marine mollusks for the selection of shell samples for radiocarbon dating. Radiocarbon 28(2A), 457463. https://doi.org/10.1017/S0033822200007591.CrossRefGoogle Scholar
Zamanian, K, Pustovoytov, K and Kuzyakov, Y (2016) Recrystallization of shell carbonate in soil: 14C labeling, modeling and relevance for dating and paleo-reconstructions. Geoderma 282, 8795. https://doi.org/10.1016/j.geoderma.2016.07.013.CrossRefGoogle Scholar
Zhou, W, Head, MJ, Wang, F, Donahue, DJ and Jull, AJT (1999) The reliability of AMS radiocarbon dating of shells from China. Radiocarbon 41(1), 1724. https://doi.org/10.1017/S0033822200019305.CrossRefGoogle Scholar