Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-25T19:44:51.963Z Has data issue: false hasContentIssue false

Vegetation, fire, climate and human disturbance history in the southwestern Mediterranean area during the late Holocene

Published online by Cambridge University Press:  20 January 2017

Gonzalo Jiménez-Moreno*
Affiliation:
Departamento de Estratigrafía y Paleontología, Universidad de Granada, Granada, Spain
Antonio García-Alix
Affiliation:
Instituto Andaluz de Ciencias de la Tierra CSCI-UGR, Armilla, Granada, Spain
María Dolores Hernández-Corbalán
Affiliation:
Departamento de Estratigrafía y Paleontología, Universidad de Granada, Granada, Spain
R. Scott Anderson
Affiliation:
School of Earth Sciences and Environmental Sustainability, Northern Arizona University, Flagstaff, AZ, USA
Antonio Delgado-Huertas
Affiliation:
Instituto Andaluz de Ciencias de la Tierra CSCI-UGR, Armilla, Granada, Spain
*
*Corresponding author. Fax: + 34 958 248528. E-mail address:gonzaloj@ugr.es (G. Jiménez-Moreno).

Abstract

Detailed pollen, charcoal, isotope and magnetic susceptibility data from an alpine lake sediment core from Sierra Nevada, southern Spain record changes in vegetation, fire history and lake sedimentation since ca. 4100 cal yr BP. The proxies studied record an arid period from ca. 3800 to 3100 cal yr BP characterized by more xerophytic vegetation and lower lake levels. A humid period is recorded between ca. 3100 and 1850 cal yr BP, which occurred in two steps: (1) an increase in evergreen Quercus between 3100 and 2500 cal yr BP, indicating milder conditions than previously and (2) an increase in deciduous Quercus and higher lake levels, between ca. 2500 and 1850 cal yr BP, indicating a further increase in humidity and reduction in seasonal contrast. Humid maxima occurred during the Roman Humid Period, previously identified in other studies in the Mediterranean region. Intensified fire activity at this time could be related to an increase in fuel load and/or in human disturbance. An arid period subsequently occurred between 1850 and 650 cal yr BP, though a decrease in Quercus and an increase in xerophytes. The alternation of persistent North Atlantic Oscillation modes probably played an important role in controlling these humid–arid cycles.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, R.S., Jiménez-Moreno, G., Carrión, J.S., and Pérez-Martínez, C. Holocene vegetation history from Laguna de Río Seco, Sierra Nevada, southern Spain. Quaternary Science Reviews 30, (2011). 16151629.CrossRefGoogle Scholar
Arévalo Barroso, A. Atlas Nacional de España, Sección II, Grupo 9, Climatología. (1992). Ministerio de Obras Públicas y Transportes, Dirección General del Instituto Geográfico Nacional, Madrid.Google Scholar
Arias Abellán, J.A. La repoblación forestal en la vertiente norte de Sierra Nevada. Cuadernos geográficos de la Universidad de Granada. (1981). 283305.Google Scholar
Blaauw, M. Methods and code for ‘classical’ age-modelling of radiocarbon sequences. Quaternary Geochronology 5, (2010). 512518.Google Scholar
Bond, G., Kromer, B., Beer, J., Muscheler, R., Evans, M.N., Showers, W., Hoffmann, S., Lotti-Bond, R., Hajdas, I., and Bonani, G. Persistent solar influence on North Atlantic climate during the Holocene. Science 294, (2001). 21302136.CrossRefGoogle ScholarPubMed
Bull, W.E. The olive industry in Spain. Economic Geography 12, 2 (1936). 136154.CrossRefGoogle Scholar
Cacho, I., Grimalt, J.O., and Canals, M. Response of the Western Mediterranean Sea to rapid climatic variability during the last 50,000 years: a molecular biomarker approach. Journal of Marine Systems 33–34, (2002). 253272.CrossRefGoogle Scholar
Carrión, J.S. Patterns and processes of Late Quaternary environmental change in a montane region of southwestern Europe. Quaternary Science Reviews 21, (2002). 20472066.CrossRefGoogle Scholar
Carrión, J.S., Fernández, S., González-Sampériz, P., Gil-Romera, G., Badal, E., Carrión-Marco, Y., López-Merino, L., López-Sáez, J.A., Fierro, E., and Burjachs, F. Expected trends and surprises in the Lateglacial and Holocene vegetation history of the Iberian Peninsula and Balearic Islands. Review of Palaeobotany and Palynology 162, (2010). 458476.CrossRefGoogle Scholar
Carrión, J.S., Fuentes, N., González-Sampériz, P., Sánchez Quirante, L., Finlayson, J.C., Fernández, S., and Andrade, A. Holocene environmental change in a montane region of sourthern Europe with a long history of human settlement. Quaternary Science Reviews 26, (2007). 14551475.Google Scholar
Carrión, J.S., Munuera, M., Dupré, M., and Andrade, A. Abrupt vegetation changes in the Segura mountains of southern Spain throughout the Holocene. Journal of Ecology 89, (2001). 783797.CrossRefGoogle Scholar
Carrión, J.S., Sánchez-Gómez, P., Mota, J.F., Yll, E.I., and Chaín, C. Fire and grazing are contigent on the Holocene vegetation dynamics of Sierra de Gádor, southern Spain. The Holocene 13, (2003). 839849.CrossRefGoogle Scholar
Castillo Martín, A. Lagunas de Sierra Nevada. (2009). Editorial Universidad de Granada, Granada.Google Scholar
Combourieu Nebout, N., Peyron, O., Dormoy, I., Desprat, S., Beaudouin, C., Kotthoff, U., and Marret, F. Rapid climatic variability in the west Mediterranean during the last 25000 years from high resolution pollen data. Climate of the Past 5, (2009). 503521.CrossRefGoogle Scholar
Constantinou, G. Geological features and ancient exploitation of the Cupriferous sulphide orebodies of Cyprus. Muhly, J.D., Robert Maddin, R., and Karageorghis, V. Early Metallurgy in Cyprus 4000–500 B.C.. (1982). Pierides Foundation, Nicosia. 1323.Google Scholar
Constantinou, G. Ancient copper mining in Cyprus. Marangouand, A., and Psillides, K. Cyprus, Copper and the Sea. (1992). Government of Cyprus, Nicosia. 4374.Google Scholar
Crow, J.A. Spain, the Root and the Flower. (1985). University of California Press, Berkeley.Google Scholar
Daniau, A.L., Sánchez-Goñi, M.F., Beaufort, L., Laggoun-Défarge, F., Loutre, M.F., and Duprat, J. Dansgaard–Oeschger climatic variability revealed by fire emissions in southwestern Iberia. Quaternary Science Reviews 26, (2007). 13691383.CrossRefGoogle Scholar
de Luis, M., Brunetti, M., Gonzalez-Hidalgo, J.C., Longares, L.A., and Martin-Vide, J. Changes in seasonal precipitation in the Iberian Peninsula during 1946–2005. Global and Planetary Change 74, (2010). 2733.CrossRefGoogle Scholar
Dearing, J. Magnetic susceptibility. Walden, J., Oldfield, F., and Smith, J. Environmental Magnetism: A Practical Guide. (1999). Quaternary Research Association, London. 3562.Google Scholar
del Río, S., Herrero, L., Pinto-Gomes, C., and Penas, A. Spatial analysis of mean temperature trends in Spain over the period 1961–2006. Global and Planetary Change 78, (2001). 6575.Google Scholar
Dresch, J. De la Serra Nevada au Grand Atlas, formes glaciaires et formes de nivation. Mélanges de Géographie et d'Orientalisme offerts a E.F. Gautier. Tours. (1937). 194212.Google Scholar
El Aallali, A., López Nieto, J.M., Pérez Raya, F., and Molero Mesa, J. Estudio de la vegetación forestal en la vertiente sur de Sierra Nevada (Alpujarra Alta granadina). Ininera Geobotanica 11, (1998). 387402.Google Scholar
Faegri, K., and Iversen, J. Textbook of Pollen Analysis. (1989). Wiley, New York.Google Scholar
Farquhar, G.D., O'Leary, M.H., and Berry, J.A. On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Australian Journal of Plant Physiology 9, (1982). 121137.Google Scholar
Fletcher, W., Boski, T., and Moura, D. Palynological evidence for environmental and climatic change in the lower Guadiana valley (Portugal) during the last 13,000 years. The Holocene 17, (2007). 479492.CrossRefGoogle Scholar
Fletcher, W.J., Debret, M., Sánchez Goñi, M.F., in press. Mid-Holocene emergence of a low-frequency millennial oscillation in western Mediterranean climate: implications for past dynamics of the North Atlantic atmospheric westerlies. The Holocene.Google Scholar
Fletcher, W.J., and Sanchez Goñi, M.F. Orbital- and sub-orbital-scale climate impacts on vegetation of the western Mediterranean basin over the last 48,000 yr. Quaternary Research 70, (2008). 451464.Google Scholar
Fletcher, W.J., Sanchez Goñi, M.F., Peyron, O., and Dormoy, I. Abrupt climate changes of the last deglaciation detected in a Western Mediterranean forest record. Climates of the Past 6, (2010). 245264.CrossRefGoogle Scholar
Frigola, J., Moreno, A., Cacho, I., Canals, M., Sierro, F.J., Flores, J.A., Grimalt, J.O., Hodell, D.A., and Curtis, J.H. Holocene climate variability in the western Mediterranean region from a deepwater sediment record. Paleoceanography 22, (2007). PA2209 CrossRefGoogle Scholar
García-Alix, A., Jiménez-Moreno, G., Anderson, R.S., Jiménez-Espejo, F., and Delgado-Huertas, A. Holocene paleoenvironmental evolution of a high-elevation wetland in Sierra Nevada, southern Spain, deduced from an isotopic record. Journal of Paleolimnology 48, (2012). 471484. http://dx.doi.org/10.1007/s10933-012-9625-2CrossRefGoogle Scholar
Gil-Romera, G., Carrión, J.S., Pausas, J.G., Sevilla-Callejo, M., Lamb, H.F., Fernández, S., and Burjachs, F. Holocene fire activity and vegetation response in South-Eastern Iberia. Quaternary Science Reviews 29, (2010). 10821092.Google Scholar
Gómez Ortiz, A. Morfologia glaciar en la vertiente meridional de Sierra Nevada (area Veleta-Mulhacen). Estudios Geográficos 48, 188 (1987). 379407.Google Scholar
Gómez Ortiz, A., Schulte, L., Salvador Franch, F., Palacios Estremera, D., Sanjosé Blasco, J.J., and Atkinson Gordo, A. Deglaciación reciente de Sierra Nevada. Repercusiones morfogénicas, nuevos datos y perspectivas de estudio futuro. Cuadernos de Investigación Geográfica 30, (2004). 147168.CrossRefGoogle Scholar
Gómez Ortiz, A., Schulte, L., Salvador Franch, F., Palacios Estremera, D., Sanz de Galdeano, C., Sanjosé Blasco, J.J., Tanarro García, L.M., and Atkinson, A. The geomorphological unity of the Veleta: a particular area of the Sierra Nevada. Guidebook, Sixth International Conference on Geomorphology. (2005). Ministerio de Medio Ambiente, Madrid.Google Scholar
González Trueba, J.J., Martín Moreno, R., Martínez de Pisón, E., and Serrano, E. ‘Little Ice Age’ glaciation and current glaciers in the Iberian Peninsula. The Holocene 18, (2008). 551568.CrossRefGoogle Scholar
Grimm, E.C. CONISS: a Fortran 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Computers and Geosciences 13, (1987). 1335.Google Scholar
Harding, A., Palutikof, J., and Holt, T. The climate system. Woodward, J. The Physical Geography of the Mediterranean. (2009). Oxford University Press, Oxford. 6888.Google Scholar
Hertig, E., and Jacobeit, J. Downscaling future climate change: temperatura scenarios for the Mediterranean area. Global and Planetary Change 63, (2008). 127131.CrossRefGoogle Scholar
Higuera, P.E., Brubaker, L.B., Anderson, P.M., Hu, F.S., and Brown, T.A. Vegetation mediated the impacts of postglacial climatic change on fire regimes in the south-central Brooks Range, Alaska. Ecological Monographs 79, (2009). 201219.CrossRefGoogle Scholar
Hodell, D.A., and Schelske, C.L. Production, sedimentation, and isotopic composition of organic matter in Lake Ontario. Limnology and Oceanography 43, (1998). 200214.CrossRefGoogle Scholar
Jackson, M.G., Oskarsson, N., Tronnes, R.G., McManus, J.F., Oppo, D.W., Grönvold, K., Hart, S.R., and Sachs, J.P. Holocene loess deposition in Iceland: evidence for millennial-scale atmosphere–ocean coupling in the North Atlantic. Geology 33, (2005). 509512.CrossRefGoogle Scholar
Jalut, G., Dedoubat, J.J., Fontugne, M., and Otto, T. Holocene circum-Mediterranean vegetation changes: climate forcing and human impact. Quaternary International 200, (2009). 418.Google Scholar
Jiménez-Moreno, G., and Anderson, R.S. Holocene vegetation and climate change recorded in alpine bog sediments from the Borreguiles de la Virgen, Sierra Nevada, southern Spain. Quaternary Research 77, (2012). 4453.CrossRefGoogle Scholar
Jiménez-Moreno, G., Anderson, R.S., and Fawcett, P.J. Millennial-scale vegetation and climate changes of the past 225 kyr from Bear Lake, Utah–Idaho (USA). Quaternary Science Reviews 26, (2007). 17131724.CrossRefGoogle Scholar
Jiménez-Moreno, G., Fawcett, P.J., and Anderson, R.S. Millennial- and centennial-scale vegetation and climate changes during the late Pleistocene and Holocene from northern New Mexico (USA). Quaternary Science Reviews 27, (2008). 14421452.CrossRefGoogle Scholar
Jiménez-Moreno, G., Anderson, R.S., Desprat, S., Grigg, L.D., Grimm, E.C., Heusser, L.E., Jacobs, B.F., López-Martínez, C., Whitlock, C.L., and Willard, D.A. Millenial-scale variability during the last glacial in vegetation records from North America. Quaternary Science Reviews 29, (2010). 28652881.Google Scholar
Jiménez-Moreno, G., Anderson, R.S., Atudorei, V., and Toney, J.L. A high-resolution record of vegetation, climate, and fire regimes in the mixed conifer forest of northern Colorado (USA). Geological Society of America Bulletin 123, (2011). 240254.CrossRefGoogle Scholar
Kennedy, H. Muslim Spain and Portugal, a Political History of al-Andalus. (1996). Longman, London.Google Scholar
Linstädter, A., and Zielhofer, C. Regional fire history shows abrupt responses of Mediterranean ecosystems to centennial-scale climate change (OleaPistacia woodlands), NE Morocco. Journal of Arid Environments 74, (2010). 101110.Google Scholar
Lionello, P., Malanotte-Rizzoli, P., Boscolo, R., Alpert, P., Artale, V., Li, L., Luterbacher, J., May, W., Trigo, R., Tsimplis, M., Ulbric, U., and Xoplaki, E. The Mediterranean climate: an overview of the main characteristics and issues. Lionello, P., Malanotte-Rizzoli, P., and Boscolo, R. Mediterranean Climate Variability, Developments in Earth and Environmental Sciences. (2006). Elsevier, Amsterdam. 126.Google Scholar
López-Moreno, J.I., Vicente-Serrano, S.M., Morán-Tejeda, E., Lorenzo-Lacruz, J., Kenawy, A., and Beniston, M. Effects of the North Atlantic Oscillation (NAO) on combined temperatura and precipitation Winter modes in the Mediterranean mountains: observed relationships and projects for the 21st century. Global and Planetary Change 77, (2011). 6276.CrossRefGoogle Scholar
Magny, M. Holocene climate variability as reflected by mid-European lake-level fluctuations and its probable impact on prehistoric human settlements. Quaternary International 113, (2004). 6579.CrossRefGoogle Scholar
Martín Martín, J.M., Braga Alarcón, J.C., and Gómez Pugnaire, M.T. Geological Routes of Sierra Nevada. (2010). Regional Ministry for the Environment, Junta de Andalucía.Google Scholar
Martín-Puertas, C., Valero-Garcés, B.L., Mata, M.P., González-Sampériz, P., Bao, R., Moreno, A., and Stefanova, V. Arid and humid phases in southern Spain during the last 4000 years: the Zonar Lake record, Cordoba. The Holocene 18, (2008). 907921.Google Scholar
Martín-Puertas, C., Jiménez-Espejo, F., Martínez-Ruiz, F., Nieto-Moreno, V., Rodrigo, M., Mata, M.P., and Valero-Garcés, B.L. Late Holocene climate variability in the southwestern Mediterranean region: an integrated marine and terrestrial geochemical approach. Climate of the Past 6, (2010). 807816.Google Scholar
May, W. Potential future changes in the characteristics of daily precipitation in Europe simulated by the HIRHAM regional climate model. Climate Dynamics 30, (2008). 581603.CrossRefGoogle Scholar
Meyers, P.A. Preservation of elemental and isotopic source identification of sedimentary organic matter. Chemical Geology 113, (1994). 289302.CrossRefGoogle Scholar
Meyers, P.A., and Teranes, J.L. Sediment organic matter. Last, W.M., Smol, J.P. Tracking Environmental Changes Using Lake Sediments vol. 2, (2001). Kluwer Academic Publishers, Dordrecht. 239270.Google Scholar
Moreno Onorato, A., Contreras Cortés, F., Renzi, M., Rovira Llorens, S., and Cortés Santiago, H. Estudio preliminar de las escorias y escorificaciones del yacimiento metalúrgico de la Edad del Bronce de Peñalosa (Baños de la Encina, Jaén). Trabajos de Prehistoria 67, (2010). 305322.Google Scholar
Moreno, A., Pérez, A., Frigola, J., Nieto-Moreno, V., Rodrigo-Gámiz, M., Martrat, B., González-Sampériz, P., Morellón, M., Martín-Puertas, C., Corella, J.P., Belmonte, A., Sancho, C., Cacho, I., Herrera, G., Canals, M., Grimalt, J.O., Jiménez-Espejo, F., Martínez-Ruiz, F., Vegas-Villarrúbia, T., and Valero-Garcés, B.L. The Medieval Climate Anomaly in the Iberian Peninsula reconstructed from marine and lake records. Quaternary Science Reviews 42, (2012). 1632.CrossRefGoogle Scholar
Nocete, F., Álex, E., Nieto, J.M., Sáez, R., and Bayona, M.R. An archaeological approach to regional environmental pollution in the south-western Iberian Peninsula related to Third millennium BC mining and metallurgy. Journal of Archaeological Science 32, (2005). 15661576.CrossRefGoogle Scholar
O'Leary, M.H. Carbon isotope fractionation in plants. Phytochemistry 20, (1981). 553567.Google Scholar
O'Leary, M.H. Carbon isotopes in photosynthesis. Bioscience 38, (1988). 328336.CrossRefGoogle Scholar
Obermaier, H., and Carandell, J. Los glaciares cuaternarios en Sierra Nevada. Trabajos Museo Nacional Ciencias Naturales (Geología) 17, (1916). 168.Google Scholar
Oliva, M., (2006). Reconstrucció paleoambiental Holocena de Sierra Nevada a partir de registres sedimentaris. Ph.D. thesis dissertation. Universitat de Barcelona, Spain.Google Scholar
Oliva, M., and Gómez-Ortiz, A. Late-Holocene environmental dynamics and climate variability in a Mediterranean high mountain environment (Sierra Nevada, Spain) infered from lake sediments and historical sources. The Holocene 22, (2012). 915927.Google Scholar
Ortiz, J.E., Torres, T., Delgado, A., Julia, R., Lucini, M., Llamas, F.J., Reyes, E., Soler, V., and Valle, M. The palaeoenvironmental and palaeohydrological evolution of Padul Peat Bog (Granada, Spain) over one million years, from elemental, isotopic and molecular organic geochemical proxies. Organic Geochemistry 35, (2004). 12431260.Google Scholar
Pérez-Obiol, R., Jalut, G., Julià, R., Pèlachs, A., Iriarte, M.J., Otto, T., and Hernández-Beloqui, B. Mid-Holocene vegetation and climatic history of the Iberian Peninsula. The Holocene 21, (2011). 7593.Google Scholar
Reed, J.M., Stevenson, A.C., and Juggins, S. A multi-proxy record of Holocene climatic change in southwestern Spain: the Laguna de Medina, Cádiz. The Holocene 11, (2001). 707719.Google Scholar
Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Bertrand, C., Blackwell, P.G., Buck, C.E., Burr, G., Cutler, K.B., Damon, P.E., Edwards, R.L., Fairbanks, R.G., Friedrich, M., Guilderson, T.P., Hughen, K.A., Kromer, B., McCormac, F.G., Manning, S., Bronk Ramsey, C., Reimer, R.W., Remmele, S., Southon, J.R., Stuiver, M., Talamo, S., Taylor, F.W., van der Plicht, J., and Weyhenmeyer, C.E. IntCal04 Terrestrial Radiocarbon Age Calibration, 0–26 Cal kyr BP. Radiocarbon 46, (2004). 10291058.Google Scholar
Renberg, I., Bindler, R., and Brännvall, M.-L. Using the historical atmospheric lead-deposition record as a chronological marker in sediment deposits in Europe. The Holocene 11, (2001). 511516.Google Scholar
Roberts, N., Brayshaw, D., Kuzucuolu, C., Perez, R., and Sadori, L. The mid-Holocene climatic transition in the Mediterranean: causes and consequences. The Holocene 21, (2011). 313.Google Scholar
Rodríguez-Ariza, M.O., and Moya, E.M. On the origin and domestication of Olea europaea L. (olive) in Andalucía, Spain, based on the biogeographical distribution of its finds. Vegetation History and Archaeobotany 14, (2005). 551561.Google Scholar
Snowball, I., and Sandgren, P. Application of mineral magnetic techniques to paleolimnology. Last, W.M., Smol, J.P. Tracking Environmental Changes Using Lake Sediments vol. 2, (2001). Kluwer Academic Publishers, Dordrecht. 217237.Google Scholar
Stöllner, T. Mining and economy — a discussion of spatial organisations and structures of early raw material exploitation. Stöllner, T., Körlin, G., Steffens, G., and Cierny, J. Man and Mining–Mensch und Bergbau: Studies in Honour of Gerd Weisgerber. (2003). Deutsches Bergbau-Museum, Bochum. 415446.Google Scholar
Tinner, W., and Kaltenrieder, P. Rapid responses of high-mountain vegetation to early Holocene environmental changes in the Swiss Alps. Journal of Ecology 93, (2005). 936947.Google Scholar
Tinner, W., and Theurillat, J.-P. Uppermost limit, extent, and fluctuations of the timberline and treeline ecocline in the swiss Central Alps during the past 11,500 years. Arctic, Antarctic, and Alpine Research 35, (2003). 158169.Google Scholar
Trouet, V., Esper, J., Graham, N.E., Baker, A., Scourse, J.D., and Frank, D.C. Persistent positive north Atlantic oscillation mode dominated the Medieval climate anomaly. Science 324, (2009). 7880.Google Scholar
Tzedakis, P.C. Seven ambiguities in the Mediterranean palaeoenvironmental narrative. Quaternary Science Reviews 26, (2007). 20422066.Google Scholar
Valbuena-Carabaña, M., López de Heredia, U., Fuentes-Utrilla, P., González-Doncel, I., and Gil, L. Historical and recent changes in the Spanish forests: a socio-economic process. Review of Palaeobotany and Palynology 162, (2010). 492506.Google Scholar
Valle, F. Mapa de Series de Vegetación de Andalucía. (2003). Editorial Rueda S.I., Madrid.Google Scholar
van Oldenborgh, G.J., Drijfhout, S., van Ulden, A., Haarsma, R., Sterl, A., Severijns, C., Hazeleger, W., and Dijkstra, H. Western Europe is warming much faster than expected. Climates of the Past 5, (2009). 112.CrossRefGoogle Scholar
Weisgerber, G. Towards a history of copper mining in Cyprus and the Near East: possibilities of mining archaeology. Muhly, J.D., Maddin, R., and Karageorghis, V. Early Metallurgy in Cyprus, 4000–500 B.C.. (1982). Pierides Foundation, Nicosia. 2532.Google Scholar
Whitlock, C., and Anderson, R.S. Fire history reconstructions based on sediment records from lakes and wetlands. Veblen, T.T., Baker, W.L., Montenegro, G., Swetnam, T.W. Fire and Climatic Change in Temperate Ecosystems of the Americas vol. 160, (2003). Springer-Verlag, New York. 331.Google Scholar
Wolfe, B.B., Edwards, T.W.D., Beuning, K.R.M., and Elgood, R.J. Carbon and oxygen isotope analysis of lake sediment cellulose: methods and applications. Last, W.M., and Smol, J.P. Tracking Environmental Changes Using Lake Sediments: Physical and Chemical Techniques. (2001). Kluwer, Dordrecht. 373400.Google Scholar