Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-25T19:50:23.599Z Has data issue: false hasContentIssue false

Vegetation and climate change Since 14,810 14C yr B.P. in southeastern uruguay and implications for the rise of early Formative societies

Published online by Cambridge University Press:  20 January 2017

José Iriarte*
Affiliation:
Center for Tropical Paleoecology and Archaeology, Smithsonian Tropical Research Institute, Unit 0948, APO AA 34002-0948, Panama
*
*Fax: +1 507 2128154.E-mail address:iriartej@si.edu

Abstract

This article presents a combined pollen and phytolith record of a 1.70-m sediment core from the wetlands of India Muerta (33° 42′ S, 53° 57′ W) in the lowland Pampa (grasslands) of southeastern Uruguay. Six 14C dates and the pollen and phytolith content of the samples permitted the recognition of four distinct climatic periods between 14,850 14C yr B.P. and the present. The Late Pleistocene period (between ca. 14,810 and ca. 10,000 14C yr B.P.) was characterized by drier and cooler conditions indicated by the presence of a C3-dominated grassland. These conditions prevailed until the onset of the warmer and more humid climate of the Holocene around 9450 14C yr B.P. The early Holocene (between around 10,000 and 6620 14C yr B.P.) was characterized by the establishment of wetlands in the region as evidenced by the formation of black peat, the increase in wetland taxa, and the replacement of C3 Pooideae by C4 Panicoideae grasses. During the mid-Holocene, around 6620 14C yr B.P., began a period of environmental change characterized by drier climatic conditions, which resulted in the expansion of halophytic communities in the flat, low-lying areas of the wetlands of India Muerta. About 4020 14C yr B.P. a massive spike of Amaranthaceae/Chenopodiaceae coupled with a radical drop in wetland species indicates another major and more severe period of dryness. After ca. 4000 14C yr B.P., a decrease of halophytic species indicates the onset of more humid and stable climatic conditions, which characterized the late Holocene.

The findings reported in this article substantially improve our knowledge of the late Glacial and Holocene climate and vegetation in the region. The data provide a detailed record of the timing and severity of mid-Holocene environmental changes in southeastern South America. Significantly, the mid-Holocene drying trend coincided with major organizational changes in settlement, subsistence, and technology of the pre-Hispanic populations in the region, which gave rise to early Formative societies. This study also represents the first combined pollen and phytolith record for southeastern South America reinforcing the utility of phytoliths as significant indicators of long-term grassland dynamics.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexandre, A., Meunier, J.D., Mariotti, A., Soubies, F., (1999). Late Holocene phytolith and carbon-isotope record from a latosol at Salitre, south-central Brazil. Quaternary Research 51, 187194.CrossRefGoogle Scholar
Alonso, E., (1996). Vegetaci"n. Spinola, , Descripci"n y Evaluaci"n Biol"gica del "rea Protegida Laguna de Castillos, PROBIDES, Rocha, Uruguay 2229.Google Scholar
Alonso, E., (1997). Plantas Acu"ticas de los Humedales del Este. Editorial Agropecuaria. Uruguay.Google Scholar
Arrarte Amonte, J., (1969). Sobre Las Praderas Naturales de la Cuenca de la Laguna Merin (Parte Uruguaya). CLM-PNUD-FAO, Uruguay.Google Scholar
Behling, H., (1997). Late Quaternary vegetation, climate and fire history in the Araucaria forest and Campos region from Sierra Campos Gerais (Parana), S Brazil. Review of Palaebotany and Palynology 97, 109121.Google Scholar
Behling, H., (2002). South and Southeast Brazilian grasslands during Late Quaternary times: a synthesis. Palaeogeography, Palaeoclimatology, Palaeoecology 177, 1927.CrossRefGoogle Scholar
Behling, H., Bauermann, S.G., Neves, P.C., (2001). Holocene environmental changes from the Sao Francisco de Paula region, southern Brazil. Journal of South American Earth Sciences 14, 631639.Google Scholar
Behling, H., Depatta Villar, V., Orloci, L., Bauermann, S., (2004). Late Quaternary Araucaria Forest, grassland (campos), fire and climatic dynamics, studied by high-resolution pollen, charcoal and multivariate analysis of the Cambar" do Sul core in southern Brazil. Palaeogeography, Paleoclimatology, Palaeoecology 203, 277297.Google Scholar
Behling, H., Depatta Villar, V., (2005). Late Quaternary grassland (campos), gallery forest, fire, and climate dynamics, studied by pollen, charcoal and multivariate analysis of the S"o Francisco de Assis Core in Western Rio Grande do Sul (Southeastern Brazil). Review of Palaeobotany and Palynology 133, 235248.Google Scholar
Blake, M., (1999). Pacific Latin America in Prehistory. The Evolution of Archaic and Formative Cultures. Washington State University Press, Pullman, Washington.Google Scholar
Bombin, M., Klamt, E., (1976). Evidencias paleoclimaticas en solos do Rio Grande do Sul. Communicacoes do Museu de Ciencias de PUCRS. Reimppressao dos Anais do XXVIII Congresso Brasileiro de Geologia 3, 183193.(Brazil).Google Scholar
Bracco, R., Monta"a, J., Bossi, J., Panarello, H., Ures, C., (2000). Evoluci"n del humedal y ocupaciones humanas en el sector sur de la cuenca de la Laguna Mer"n. Duran, A., Coirolo, A., Bracco, R., Arqueolog"a de las Tierras Bajas, Ministerio de Educaci"n y Cultura. Comisi"n Nacional de Arqueolog"a Montevideo, Uruguay., 99116.Google Scholar
Bracco, R., del Puerto, L., Inda, H., Casti"eira, C., (2005). Mid"late Holocene cultural and environmental dynamics in Eastern Uruguay. Quaternary International 132, 3745.CrossRefGoogle Scholar
Brown, D.A., (1984). Prospects and limits of a phytolith key for grasses in the Central United States. Journal of Archaeological Science 11, 345368.Google Scholar
Brown, J., (1985). Long-term trends to sedentism and the emergence of complexity in the American Midwest. Brown, J., Price, T., Complex Hunter-Gatherers, The Emergence of Cultural Complexity Academic Press, 201231.Google Scholar
Brown, J.A., Vierra, J., (1983). What happen in the middle archaic? Introduction to an ecologic approach to koster site archaeology. Price, T., Brown, J., Hunter and Gatherers in the American Midwest Academic Press, Orlando., 201231.Google Scholar
Bush, M.B., Piperno, D.R., Colinvaux, P.A., De Oliviera, P.E., Krissek, L.A., Miller, M.C., Rowe, W.E., (2003). A 14,300-yr paleoecological profile of a lowland tropical lake in panama. Ecological Monographs 62, 251276.Google Scholar
Cabrera, A.L., (1970). Flora de la Provincia de Buenos Aires, Colecci"n cient"fica, Pt. II Gramineas. Instituto Nacional de Tecnolog"a Agropecuria, Buenos Aires.Google Scholar
Cabrera, A.L., Willink, A., (1973). Biogeograf"a de Am"rica Latina. O.E.A., Washington, D.C..Google Scholar
Denham, T.P., Haberle, S., Lentfer, C., Fullagar, R., Field, J., Therin, J., Porch, M., Winsborough, B., (2003). Origins of agriculture at Kuk Swamp in the highlands of New Guinea. Science 301, 189193.Google Scholar
Faegri, K., Iverson, J., (1975). A Textbook of Pollen Analysis. third ed Haffer, New York.Google Scholar
Fredlund, G.G., Tieszen, L.T., (1994). Modern phytolith assemblages from the North American Great Plains. Journal of Biogeography 21, 321335.Google Scholar
Fredlund, G.G., Tieszen, L.T., (1997). Calibrating grass phytolith assemblages in climatic terms: application to Late Pleistocene assemblages from Kansas and Nebraska. Palaeogeography, Palaeoclimatology, Palaeoecology 136, 199211.Google Scholar
GPWG (Grass Phylogeny Working Group) (2000). A phylogeny of the grass family (Poaceae), as inferred from eight character sets. Jacobs, S.W.L., Everett, J.E., Grasses: Systematics and Evolution Commonwealth Scientific and Industrial Research Organization, Collingwood, Victoria., 37.Google Scholar
Grimm, E., (1987). CONISS: a Fortran 77 program for stratigraphically constrained cluster analysis by the method of the incremental sum of squares. Computers & Geosciences 13, 1335.Google Scholar
Iriarte, J., (2003a). Mid-Holocene Emergent Complexity and Landscape Transformation: The Social Construction of Early Formative Communities in Uruguay, La Plata Basin. Unpublished PhD Dissertation. Department of Anthropology.University of Kentucky, .Google Scholar
Iriarte, J., (2003b). Assessing the feasibility of identifying maize through the analysis of cross-shape size and tridimensional morphology of phytoliths in the grasslands of southeastern South America. Journal of Archaeological Science 30, 10851094.Google Scholar
Iriarte, J., Holst, I., Lopez, J.M., Cabrera, L., (2001). Subtropical wetland adaptations in Uruguay during the Mid-Holocene: an archaeobotanical perspective. Purdy, B., Enduring Records: The Environmental and Cultural Heritage of Wetlands Oxbow Books, England., 6170.Google Scholar
Iriarte, J., Holst, I., Marozzi, O., Listopad, C., Alonso, E., Rinderknecht, A., Monta"a, J., (2004). Evidence for cultivar adoption and emerging complexity during the mid-Holocene in the La Plata Basin. Nature 432, 614617.Google Scholar
Iriondo, M., (1993). Geomorphology and late quaternary of the Chaco (South America). Geomophology 7, 289303.CrossRefGoogle Scholar
Iriondo, M., (1999). Climatic changes in the South American plains: records of a continent-scale oscillation. Quaternary International 57/58, 93112.CrossRefGoogle Scholar
Iriondo, M., Garcia, N., (1993). Climatic variations in the argentine plains during the last 18,000 years. Palaeogeography, Palaeoclimatology, Palaeocology 101, 209220.Google Scholar
Jefferies, R.W., (1987). The Archaeology of Carrier Mills: 10,000 Years in the Saline Valley of Illinois. Center for Archaeological Investigations Southern Illinois University at Carbondale, Carbondale, Illinois.Google Scholar
Judziewicz, E.J., Soreng, R.J., Davidse, G., Peterson, P.M., Filgueiras, T.S., Zuloaga, F.O., (2000). Catalogue of the New World Grasses (Poaceae): I. Subfamilies Anomochlooideae, Bambusideae, Ehrhartoideae, and Pharoideae. Smithsonian Institution Press, Washington D.C..Google Scholar
Kealhofer, L., Penny, D., (1998). A combined pollen and phytolith record for fourteen thousand years of vegetation change in northeast Thailand. Review of Palaeobotany and Palynology 103, 8393.Google Scholar
Kelly, E.F., Amundson, R.G., Marino, B.D., Deniro, M.J., (1991). Stable isotope ratios of carbon in phytoliths as a quantitative method of monitoring vegetation climate change. Quaternary Research 35, 222233.Google Scholar
Kr"hling, D., (1999). Upper Quaternary geology of the lower Carcara"" Basin, North Pampa, Argentina. Quaternary International 57/58, 135148.Google Scholar
Kr"hling, D., Iriondo, M., (1999). Upper quaternary palaeoclimates of the Mar Chiquita area, North Pampa, Argentina. Quaternary International 57/58, 149163.Google Scholar
Ledru, M.P., Salgado Labouriau, M.L., Lorscheiter, M.L., (1998). Vegetation dynamics in Southern and Central Brazil during the last 10,000 yr B.P.. Review of Paleobotany and Palynology 99, 131142.Google Scholar
Leon, R.J., (1992). The Rio de la Plata Grasslands. Coupland, R.T., Natural Grasslands. Introduction and Western Hemisphere Elvesier, Amsterdam., 371389.Google Scholar
Manzini, M., Paez, M., Prieto, R., Stutz, S., Tonello, M., Vilanova, I., (2005). Mid-Holocene climatic variability reconstruction from pollen records (32""52"S Argentina). Quaternary International 132, 4759.Google Scholar
Monta"a, J., Bossi, J., (1995). Geomorfolog"a de los humedales de la cuenca de la Laguna Merin. PROBIDES, Uruguay.Google Scholar
Mulholland, S.C., (1989). Phytolith shape and frequencies in North Dakota grasses: a comparison of general patterns. Journal of Archaeological Science 16, 489511.Google Scholar
Mulholland, S., Prior, C., (1993). AMS radiocarbon dating of phytoliths. Pearsall, D., Piperno, D., Current Research in Phytolith Analysis: Applications in Archaeology and Paleoecology, MASCA The University of Pennsylvania Museum of Archaeology and Anthropology, Philadelphia., 2123.Google Scholar
Peixoto, J., Becerra, M.A., Mozeto, A., Hilbert, K., (2001). Evolucao das Grandes Lagoas e a Ocupacao Humana no Pantanal Mato-Grossense durante o Holocene. Mudancas Globais e o Quaternario, Boletin de Resumos, ABEQUA, Rio Grande do Sul, Brazil 438439.Google Scholar
Piperno, D.R., (2005). A Comprehensive Guide for Archeologists and Paleoecologists. Altamira Press, Maryland, US.Google Scholar
Piperno, D.R., Jones, J.G., (2003). Paleoecological and archaeological implications of a Late Pleistocene/Early Holocene record of vegetation and climate from the pacific coastal plain of Panama. Quaternary Research 59, 7987.Google Scholar
Piperno, D.R., Pearsall, D.M., (1998a). The Origins of Agriculture in the Lowland Neotropics. Academic Press, San Diego, CA.Google Scholar
Piperno, D.R., Pearsall, D.M., (1998b). The silica bodies of tropical American grasses: Morphology, Taxonomy, and Implications for grass systematics and fossil phytolith identification. Smithsonian Contributions to Botany vol. 85, Smithsonian Institution Press, Washington, D.C..Google Scholar
Pope, K.O., Pohl, M.E.D., Jones, J.G., Lentz, D.L., Von Nagy, C., Vega, F.J., Quitmyer, I.R., (2001). Origin and environmental setting of ancient agriculture in the lowlands of mesoamerica. Science 292, 13701373.CrossRefGoogle ScholarPubMed
Prieto, A.R., (1996). Late Quaternary vegetational and climatic changes in the Pampa grasslands of Argentina. Quaternary Research 45, 7388.Google Scholar
Prieto, A.R., (2000). Vegetational history of the Late Glacial"Holocene transition in the grasslands of eastern Argentina. Palaeogeography, Palaeoclimatology, Palaeoecology 157, 167188.Google Scholar
Prieto, A.R., Blasi, A.M., De Francesco, C.G., Fern"ndez, C., (2004). Environmental history since 11,000 14C yr B.P. of the northeastern Pampas, Argentina, from alluvial sequences of the Luj"n River. Quaternary Research 62, 146161.Google Scholar
PROBIDES, , (2000). Plan Director. Reserva de Biosfera Ba"ados del Este. PROBIDES, Rocha, Uruguay.Google Scholar
Rosengurtt, B., Gallinal, J.P., Bergalli, L.U., Campal, E.F., Aragone, L., (1949). Estudio sobre las praderas naturales de Uruguay. Primera Contribuci"n. Imprenta Germano Uruguaya, Uruguay.Google Scholar
Rosengurtt, B., Arrillaga de Maffei, B.R., Izaguirre de Artucio, P., (1970). Gramineas uruguayas. Universidad de la Republica, Uruguay.Google Scholar
Sandweiss, D., Maasch, K., Anderson, D.G., (1999). Transitions in the Mid-Holocene. Science 283, 499500.CrossRefGoogle Scholar
Sendulsky, T., Labouriau, L.G., (1966). Corpos siliceos de Gramineas dos Cerrados-I. Annais da Academia Brasileira de Ciencias 38, 159185.Google Scholar
Siemens, A.H., (1999). Wetlands as resource concentrations in southeastern Ecuador. Blake, M., Pacific Latin America in Prehistory. The Evolution of Archaic and Formative Cultures Washington State University Press, Pullman, Washington., 137147.Google Scholar
Su"rez, R., L"pez, J.M., (2003). Archaeology of the Pleistocene"Holocene transition in Uruguay: an overview. Quaternary International 109, 6579.CrossRefGoogle Scholar
Tomazelli, L.J., Vilwock, J., (1996). Quaternary geological evolution of Rio Grande do Sul coastal plain, southern Brazil. Quaternary geological evolution of Rio Grande do Sul coastal plain, southern Brazil. Annais da Academia Brasileira de Ciencias 68, 373381.Google Scholar
Twiss, P.C., (1992). Predicted world distribution of C3 and C4 grass phytoliths. Rapp, G., Mulholland, S., Phytolith Systematics. Emerging Issues Plenum Press, New York., 113128.Google Scholar
Twiss, P.C., Suess, E., Smith, R.M., (1969). Morphological classification of grass phytoliths. Proceedings of Soil Science of America 33, 109115.Google Scholar
Vandergoes, M.J., Prior, C.A., (2003). AMS dating of pollen concentrates"A methodological study of Late Quaternary sediments from south Westland, New Zealand. Radiocarbon 45, 479491.Google Scholar
Z"rate, M., Neme, G., (2005). Mid-Holocene paleoenvironments and human occupation in the southern South America. Quaternary International 132, 13.Google Scholar
Zucol, A.F., (2000). Fitolitos de Poaceae de Argentina: III. Fitolitos foliares de especies del genero Paspalum (Paniceae) en la Provincia de Entre Rios. Darwiniana 38, 1132.Google Scholar