Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-11T01:55:38.912Z Has data issue: false hasContentIssue false

Tracking late-Quaternary extinctions in interior Alaska using megaherbivore bone remains and dung fungal spores

Published online by Cambridge University Press:  28 April 2020

Keziah J. Conroy
Affiliation:
Environmental Change Research Center, Department of Geography, University College London, Gower Street, London, WC1E 6BT Leverhulme Centre for Human Evolutionary Studies, Henry Wellcome Building, Fitzwilliam Street, Cambridge, CB2 1QH
Ambroise G. Baker*
Affiliation:
Environmental Change Research Center, Department of Geography, University College London, Gower Street, London, WC1E 6BT School of Health and Life Science, Teesside University, Middlesbrough, TS1 3BX
Vivienne J. Jones*
Affiliation:
Environmental Change Research Center, Department of Geography, University College London, Gower Street, London, WC1E 6BT
Maarten van Hardenbroek
Affiliation:
Geography and Environment, University of Southampton, Southampton, SO17 1BJ Geography Politics and Sociology, Newcastle University, Newcastle upon Tyne, NE1 7RU
Emma J. Hopla
Affiliation:
Geography and Environment, University of Southampton, Southampton, SO17 1BJ
Robert Collier
Affiliation:
Geography and Environment, University of Southampton, Southampton, SO17 1BJ
Adrian M. Lister
Affiliation:
Department of Earth Sciences, Natural History Museum, London, SW7 5BD
Mary E. Edwards
Affiliation:
Geography and Environment, University of Southampton, Southampton, SO17 1BJ
*
*Corresponding authors at: School of Health and Life Science, Teesside University, Middlesbrough, TS1 3BX (A.G. Baker) and Environmental Change Research Centre, Department of Geography, University College London, Gower Street, London, WC1E 6BT (V.J. Jones). Email addresses: a.baker@tees.ac.uk (A.G. Baker), vivienne.jones@ucl.ac.uk (V.J. Jones).
*Corresponding authors at: School of Health and Life Science, Teesside University, Middlesbrough, TS1 3BX (A.G. Baker) and Environmental Change Research Centre, Department of Geography, University College London, Gower Street, London, WC1E 6BT (V.J. Jones). Email addresses: a.baker@tees.ac.uk (A.G. Baker), vivienne.jones@ucl.ac.uk (V.J. Jones).

Abstract

One major challenge in the study of late-Quaternary extinctions (LQEs) is providing better estimates of past megafauna abundance. To show how megaherbivore population size varied before and after the last extinctions in interior Alaska, we use both a database of radiocarbon-dated bone remains (spanning 25–0 ka) and spores of the obligate dung fungus, Sporormiella, recovered from radiocarbon-dated lake-sediment cores (spanning 17–0 ka). Bone fossils show that the last stage of LQEs in the region occurred at about 13 ka ago, but the number of megaherbivore bones remains high into the Holocene. Sporormiella abundance also remains high into the Holocene and does not decrease with major vegetation changes recorded by arboreal pollen percentages. At two sites, the interpretation of Sporormiella was enhanced by additional dung fungal spore types (e.g., Sordaria). In contrast to many sites where the last stage of LQEs is marked by a sharp decline in Sporormiella abundance, in interior Alaska our results indicate the continuance of megaherbivore abundance, albeit with a major taxonomic turnover (including Mammuthus and Equus extinction) from predominantly grazing to browsing dietary guilds. This new and robust evidence implies that regional LQEs were not systematically associated with crashes of overall megaherbivore abundance.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, P.M., Edwards, M.E., Brubaker, L.B., 2004. Results and paleoclimate implications of 35 years of paleoecological research in Alaska. In Gillespie, A.R., Porter, S.C., Atwater, B.F. (Eds), The Quaternary Period in the United States. Developments in Quaternary Science. Elsevier, New York, pp. 427440.Google Scholar
Baker, A.G., Bhagwat, S.A., Willis, K.J., 2013. Do dung fungal spores make a good proxy for past distribution of large herbivores? Quaternary Science Reviews 62, 2131.CrossRefGoogle Scholar
Baker, A.G., Cornelissen, P., Bhagwat, S.A., Vera, F.W.M., Willis, K.J., 2016. Quantification of population sizes of large herbivores and their long-term functional role in ecosystems using dung fungal spores. Methods in Ecology and Evolution 7, 12731281. https://doi.org/10.1111/2041-210X.12580.CrossRefGoogle Scholar
Bennett, K.D., Willis, K.J., 2001. Pollen. In: Smol, J.P., Birks, H.J.B., Last, W.M. (Eds.), Tracking Environmental Change Using Lake Sediments. Volume 3 Terrestrial, Algal, and Siliceous Indicators. Kluwer Academic Publishers, Dordrecht, pp. 532.Google Scholar
Bigelow, N.H., Edwards, M.E., 2001. A 14,000 yr paleoenvironmental record from Windmill Lake, central Alaska: Lateglacial and Holocene vegetation in the Alaska range. Quaternary Science Reviews 20, 203215. https://doi.org/10.1016/S0277-3791(00)00122-0.CrossRefGoogle Scholar
Blaauw, M., Christen, J.A., 2011. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Analysis 6, 457474.Google Scholar
Bradshaw, R.H.W., Hannon, G.E., Lister, A.M., 2003. A long-term perspective on ungulate–vegetation interactions. Forest Ecolology and Management 181, 267280. https://doi.org/10.1016/S0378-1127(03)00138-5.CrossRefGoogle Scholar
Broughton, J.M., Weitzel, E.M., 2018. Population reconstructions for humans and megafauna suggest mixed causes for North American Pleistocene extinctions. Nature Communications 9, 112. https://doi.org/10.1038/s41467-018-07897-1.CrossRefGoogle ScholarPubMed
Campos, P.F., Willerslev, E., Sher, A., Orlando, L., Axelsson, E., Tikhonov, A., Aaris-Sørensen, , et al. 2010. Ancient DNA analyses exclude humans as the driving force behind late Pleistocene musk ox (Ovibos moschatus) population dynamics. Proceedings of the National Academy of Sciences 107, 56755680. https://doi.org/10.1073/pnas.0907189107.CrossRefGoogle ScholarPubMed
Carlson, L.J., Finney, B.P., 2004. A 13 000-year history of vegetation and environmental change at Jan Lake, east-central Alaska. The Holocene 14, 818827. https://doi.org/10.1191/0959683604hl762rp.CrossRefGoogle Scholar
Davies, A.L. 2019. Dung fungi as an indicator of large herbivore dynamics in peatlands. Review of Palaeobotany and Palynology 271, 111.CrossRefGoogle Scholar
Davis, O.K., Shafer, D.S., 2006. Sporormiella fungal spores, a palynological means of detecting herbivore density. Palaeogeography, Palaeoclimatology, Palaeoecology 237, 4050.CrossRefGoogle Scholar
Denton, J.S., Pearce, N.J.G., 2008. Comment on “A synchronized dating of three Greenland ice cores through the Holocene” by B.M. Vinther et al.: no Minoan tephra in the 1642 B.C. layer of the GRIP ice core. Journal of Geophysical Research 113, D04303. http://dx.doi.org/10.1029/2007JD008970CrossRefGoogle Scholar
Dix, N.J., Webster, J. (Eds.), 1995. Fungal Ecology. Chapman & Hall, London, UK.CrossRefGoogle Scholar
Doughty, C.E., Wolf, A., Malhi, Y., 2013. The legacy of the Pleistocene megafauna extinctions on nutrient availability in Amazonia. Nature Geoscience 6, 15. https://doi.org/10.1038/ngeo1895.CrossRefGoogle Scholar
Eklund, A., 2016. Package ‘ beeswarm.’Google Scholar
Etienne, D., Jouffroy-Bapicot, I., 2014. Optimal counting limit for fungal spore abundance estimation using Sporormiella as a case study. Vegetation History and Archaeobotany 23, 743749. https://doi.org/10.1007/s00334-014-0439-1.CrossRefGoogle Scholar
Etienne, D., Wilhelm, B., Sabatier, P., Reyes, J.-L., Arnaud, F., 2013. Influence of sample location and livestock numbers on Sporormiella concentrations and accumulation rates in surface sediments of Lake Allos, French Alps. Journal of Paleolimnology 49, 117127. https://doi.org/10.1007/s10933-012-9646-x.CrossRefGoogle Scholar
Gaglioti, B. V, Barnes, B.M., Zazula, G.D., Beaudoin, A.B., Wooller, M.J., 2011. Late Pleistocene paleoecology of arctic ground squirrel (Urocitellus parryii) caches and nests from Interior Alaska's mammoth steppe ecosystem, USA. Quaternary Research 76, 373382. https://doi.org/10.1016/j.yqres.2011.08.004.CrossRefGoogle Scholar
Galetti, M., Moleón, M., Jordano, P., Pires, M.M., Guimarães, P.R., Pape, T., Nichols, E., et al. , 2018. Ecological and evolutionary legacy of megafauna extinctions. Biological Reviews 93, 845862. https://doi.org/10.1111/brv.12374.CrossRefGoogle ScholarPubMed
Gill, J.L., 2014. Ecological impacts of the late Quaternary megaherbivore extinctions. New Phytologist 201, 11631169. https://doi.org/10.1111/nph.12576.CrossRefGoogle ScholarPubMed
Gill, J.L., McLauchlan, K.K., Skibbe, A.M., Goring, S., Zirbel, C.R., Williams, J.W., 2013. Linking abundances of the dung fungus Sporormiella to the density of bison: Implications for assessing grazing by megaherbivores in palaeorecords. Journal of Ecology 101, 11251136. https://doi.org/10.1111/1365-2745.12130.CrossRefGoogle Scholar
Gill, J.L., Williams, J.W., Jackson, S.T., Lininger, K.B., Robinson, G.S., 2009. Pleistocene megafaunal collapse, novel plant communities, and enhanced fire regimes in North America. Science 326, 11001103. https://doi.org/10.1126/science.1179504.CrossRefGoogle ScholarPubMed
Graham, R.W., Belmecheri, S., Choy, K., Culleton, B.J., Davies, L.J., Froese, D., Heintzman, P.D., et al. , 2016. Timing and causes of mid-Holocene mammoth extinction on St. Paul Island, Alaska. Proceedings of the National Academy of Sciences of the United States of America 113, 93109314. https://doi.org/10.1073/pnas.1604903113.Google ScholarPubMed
Guthrie, R.D., 1968. Paleoecology of the large-mammal community in interior Alaska during the late Pleistocene. American Midlands Naturalist 79, 346363CrossRefGoogle Scholar
Guthrie, R.D., 1982. Mammals of the Mammoth Steppe as Paleoecological Indicators. In: Hopkins, D.M. et al. , eds. Paleoecology of Beringia. New York Academic Press. Pp 307326.CrossRefGoogle Scholar
Guthrie, R.D., 2003. Rapid body size decline in Alaskan Pleistocene horses before extinction. Nature 426, 169171. https://doi.org/10.1038/nature02098.CrossRefGoogle ScholarPubMed
Guthrie, R.D., 2006. New carbon dates link climatic change with human colonization and Pleistocene extinctions. Nature 441, 207209. https://doi.org/10.1038/nature04604.CrossRefGoogle ScholarPubMed
Haile, J., Froese, D.G., MacPhee, R.D.E., Roberts, R.G., Arnold, L.J., Reyes, A. V, Rasmussen, M., et al. , 2009. Ancient DNA reveals late survival of mammoth and horse in interior Alaska. Proceedings of the National Academy of Sciences of the United States of America 106, 2235222357.CrossRefGoogle ScholarPubMed
Heintzman, P.D., Froese, D., Ives, J.W., Soares, A.E.R., Zazula, G.D., Letts, B., Andrews, T.D., et al. , 2016. Bison phylogeography constrains dispersal and viability of the Ice Free Corridor in western Canada. Proceedings of the National Academy of Sciences of the United States of America 113, 80578063. https://doi.org/10.1073/pnas.1601077113.CrossRefGoogle ScholarPubMed
Hempson, G.P., Archibald, S., Bond, W.J., Ellis, R.P., Grant, C.C., Kruger, F.J., Kruger, L.M., et al. , 2015. Ecology of grazing lawns in Africa. Biological Reviews 90, 979994. https://doi.org/10.1111/brv.12145.CrossRefGoogle ScholarPubMed
Higuera, P.E., Brubaker, L.B., Anderson, P.M., Hu, F.S., Brown, T.A., 2009. Vegetation mediated the impacts of postglacial climate change on fire regimes in the south-central Brooks Range, Alaska. Ecological Monographs 79, 201219. https://doi.org/10.1890/07-2019.1.CrossRefGoogle Scholar
Johnson, C.N., 2009. Ecological consequences of Late Quaternary extinctions of megafauna. Proceedings of the Royal Society B Biological Sciences 276, 2509–19. https://doi.org/10.1098/rspb.2008.1921.CrossRefGoogle ScholarPubMed
Johnson, C.N., Rule, S., Haberle, S.G., Turney, C.S.M., Kershaw, A. P., Brook, B.W., 2015. Using dung fungi to interpret decline and extinction of megaherbivores: problems and solutions. Quaternary Science Reviews 110, 107113. https://doi.org/10.1016/j.quascirev.2014.12.011.CrossRefGoogle Scholar
Juggins, S., 2007. C2 User guide Version 1.5. School of Geography, Politics & Sociology, Newcastle University, Newcastle upon Tyne.Google Scholar
Kamerling, I.M., Schofield, J.E., Edwards, K.J., Aronsson, K.Å., 2017. High-resolution palynology reveals the land use history of a Sami renvall in northern Sweden. Vegetation History and Archaeobotany 26, 369388. https://doi.org/10.1007/s00334-016-0596-5.CrossRefGoogle ScholarPubMed
Kitchen, A., Miyamoto, M.M., Mulligan, C.J., 2008. A three-stage colonization model for the peopling of the Americas. PLoS One 3, e1596. https://doi.org/10.1371/journal.pone.0001596.CrossRefGoogle ScholarPubMed
Koch, P.L., Barnosky, A.D., 2006. Late Quaternary Extinctions: State of the Debate. Annual Review of Ecology, Evolution, and Systematics 37, 215250. https://doi.org/10.1146/annurev.ecolsys.34.011802.132415.CrossRefGoogle Scholar
Kosintsev, P., Mitchell, K.J., Devièse, T., van der Plicht, J., Kuitems, M., Petrova, E., Tikhonov, A., Higham, T., Comeskey, D., Turney, C., Cooper, A., van Kolfschoten, T., Stuart, A.J., Lister, A.M. 2019. Evolution and extinction of the giant rhinoceros Elasmotherium sibiricum sheds light on late Quaternary megafaunal extinctions. Nature Ecology and Evolution 3, 3138.CrossRefGoogle ScholarPubMed
Krug, J.C., Benny, G.L., Keller, H.W., 2004. Coprophilous fungi. In: Mueller, G.M., Foster, M.S., Bills, G.F. (Eds.), Biodiversity of Fungi. Elsevier, Amsterdam, pp. 468499.Google Scholar
Lorenzen, E.D., Nogués-Bravo, D., Orlando, L., Weinstock, J., Binladen, J., Marske, K.A., Ugan, A., et al. , 2011. Species-specific responses of Late Quaternary megafauna to climate and humans. Nature 479, 359–64. https://doi.org/10.1038/nature10574.CrossRefGoogle ScholarPubMed
Malhi, Y., Doughty, C.E., Galetti, M., Smith, F.A., Svenning, J.-C., Terborgh, J.W., 2016. Megafauna and ecosystem function from the Pleistocene to the Anthropocene. Proceedings of the National Academy of Sciences of the United States of America 113, 838846. https://doi.org/10.1073/pnas.1502540113.CrossRefGoogle ScholarPubMed
Mann, D.H., Groves, P., Gaglioti, B. V, Shapiro, B.A., 2019. Climate-driven ecological stability as a globally shared cause of Late Quaternary megafaunal extinctions: the Plaids and Stripes Hypothesis. Biological Reviews 94, 328352. https://doi.org/10.1111/brv.12456.CrossRefGoogle Scholar
Mann, D.H., Groves, P., Kunz, M.L., Reanier, R.E., Gaglioti, B.V, 2013. Ice-age megafauna in Arctic Alaska: extinction, invasion, survival. Quaternary Science Reviews 70, 91108. https://doi.org/10.1016/j.quascirev.2013.03.015.CrossRefGoogle Scholar
Mann, D.H., Groves, P., Reanier, R.E., Gaglioti, B.V, Kunz, M.L., Shapiro, B., 2015. Life and extinction of megafauna in the ice-age Arctic. Proceedings of the National Academy of Sciences of the United States of America 112, 1430114306. https://doi.org/10.1073/pnas.1516573112.CrossRefGoogle ScholarPubMed
Martindale, A., Morlan, R., Betts, M., Blake, M., Gajewski, K., Chaput, M., Mason, A., Vermeersch, P., 2016. Canadian Archaeological Radiocarbon Database (CARD 2.1) (accessed 11.1.16). http://www.canadianarchaeology.ca/.Google Scholar
McGowan, S., Anderson, N.J., Edwards, M.E., Hopla, E., Jones, V., Langdon, P.G., Law, A., Soloveiva, N., Turner, S., van Hardenbroek, M., Whiteford, E.J., Wiik, E., 2018. Vegetation transitions drive the autotrophy-heterotrophy balance in Arctic lakes. Limnology and Oceanography Letters 3, 246255. https://doi.org/10.1002/lol2.10086CrossRefGoogle Scholar
Meiri, M., Lister, A.M., Collins, M.J., Tuross, N., Goebel, T., Blockley, S., Zazula, G.D., et al. ., 2014. Faunal record identifies Bering isthmus conditions as constraint to end-Pleistocene migration to the New World. Proceedings of the Royal Society B Biological Sciences 281. https://doi.org/10.1098/rspb.2013.2167.CrossRefGoogle ScholarPubMed
Monteath, A. J., van Hardenbroek, M., Davies, L. J., Froese, D. G., Langdon, P. G., Xu, X., Edwards, M. E. 2017. Chronology and glass chemistry of tephra and cryptotephra horizons from lake sediments in northern Alaska, USA. Quaternary Research 88, 169178.CrossRefGoogle Scholar
Moore, P.D., Webb, J.A., Collinson, M.E., 1991. Pollen analysis. Blackwell Scientific Publications, Oxford.Google Scholar
Pearce, C., Varhelyi, A., Wastegård, S., Muschitiello, F., Barrientos, N., O'Regan, M., Cronin, T., et al. . 2016. The 3.6 ka Aniakchak tephra in the Arctic Ocean: a constraint on the Holocene radiocarbon reservoir age in the Chukchi Sea. Climate of the Past Discussions. http://dx.doi.org/10.5194/cp-2016-112.CrossRefGoogle Scholar
Pedersen, M.W., Ruter, A., Schweger, C., Friebe, H., Staff, R.A., Kjeldsen, K.K., Mendoza, M.L.Z., et al. , 2016. Postglacial viability and colonization in North America's ice-free corridor. Nature 537, 4549. https://doi.org/10.1038/nature19085.CrossRefGoogle ScholarPubMed
Peres, C.A., Emilio, T., Schietti, J., Desmoulière, S.J.M., Levi, T., 2016. Dispersal limitation induces long-term biomass collapse in overhunted Amazonian forests. Proceedings of the National Academy of Sciences of the United States of America 113, 892897. https://doi.org/10.1073/pnas.1516525113.CrossRefGoogle ScholarPubMed
Perrotti, A.G., 2018. Pollen and Sporormiella evidence for terminal Pleistocene vegetation change and megafaunal extinction at Page-Ladson, Florida. Quaternary International 466, 256268. https://doi.org/10.1016/j.quaint.2017.10.015.CrossRefGoogle Scholar
Perrotti, A.G., van Asperen, E., 2019. Dung fungi as a proxy for megaherbivores: opportunities and limitations for archaeological applications. Vegetation History and Archaeobotany 28, 93104. https://doi.org/10.1007/s00334-018-0686-7.CrossRefGoogle Scholar
Rabanus-Wallace, M.T., Wooller, M.J., Zazula, G.D., Shute, E., Jahren, A.H., Kosintsev, P., Burns, J.A., Breen, J., Llamas, B., Cooper, A., 2017. Megafaunal isotopes reveal role of increased moisture on rangeland during late Pleistocene extinctions. Nature Ecology & Evolution 1. https://doi.org/10.1038/s41559-017-0125.Google ScholarPubMed
Raper, D., Bush, M.B., 2009. A test of Sporormiella representation as a predictor of megaherbivore presence and abundance. Quaternary Research 71, 490496.CrossRefGoogle Scholar
Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Ramsey, C.B., Buck, C.E., et al. , 2013. IntCal13 and Marine13 Radiocarbon Age Calibration Curves 0–50,000 Years cal BP. Radiocarbon 55, 18691887. https://doi.org/10.2458/azu_js_rc.55.16947.CrossRefGoogle Scholar
Richardson, M.J., 1972. Coprophilous ascomycetes on different dung types. Transactions of the British Mycological Society Soc. 58, 3748. https://doi.org/10.1016/S0007-1536(72)80069-X.CrossRefGoogle Scholar
Richardson, M.J., 2001. Diversity and occurrence of coprophilous fungi. Mycological Research 105, 387402.CrossRefGoogle Scholar
Robinson, G.S., Burney, L.P., Burney, D.A., 2005. Landscape paleoecology and megafaunal extinction in southeastern New York State. Ecological Monographs 75, 295315.CrossRefGoogle Scholar
Sandom, C.J., Ejrnaes, R., Hansen, M.D.D., Svenning, J.-C., 2014. High herbivore density associated with vegetation diversity in interglacial ecosystems. Proceedings of the National Academy of Sciences of the United States of America 111, 41624167. https://doi.org/10.1073/pnas.1311014111.CrossRefGoogle ScholarPubMed
Stuart, A.J., 2015. Late Quaternary megafaunal extinctions on the continents: a short review. Geological Journal 50, 338363. https://doi.org/10.1002/gj.2633.CrossRefGoogle Scholar
Vachula, R.S., Huang, Y., Longo, W.M., Dee, S.G., Daniels, W.C., Russell, J.M. 2019. Evidence of Ice Age humans in eastern Beringia suggests early migration to North America. Quaternary Science Review 205, 3544.CrossRefGoogle Scholar
van Asperen, E.N., 2017. Fungal diversity on dung of tropical animals in temperate environments: Implications for reconstructing past megafaunal populations. Fungal Ecology 28, 2532. https://doi.org/10.1016/j.funeco.2016.12.006.CrossRefGoogle Scholar
van Asperen, E.N., Kirby, J.R., Hunt, C.O., 2016. The effect of preparation methods on dung fungal spores: Implications for recognition of megafaunal populations. Review of Palaeobotany and Palynolology 229, 18. https://doi.org/10.1016/j.revpalbo.2016.02.004.CrossRefGoogle Scholar
Van Asperen, E.N., Kirby, J.R., Shaw, H.E. 2019. Relating dung fungal spore influx rates to animal density in a temperate environment: Implications for palaeoecological studies. The Holocene 0, 115. https://doi.org/10.1177/0959683619875804Google Scholar
van Geel, B., Buurman, J., Brinkkemper, O., Schelvis, J., Aptroot, A., van Reenen, G.B.A., Hakbijl, T., 2003. Environmental reconstruction of a Roman Period settlement site in Uitgeest (The Netherlands), with special reference to coprophilous fungi. Journal of Archaeological Science 30, 873883.CrossRefGoogle Scholar
Walanus, A., Nalepka, D., 2013. Information content of zero pollen counts in Holocene profiles. The Holocene 23, 732738. https://doi.org/10.1177/0959683612465444.CrossRefGoogle Scholar
Willerslev, E., Davison, J., Moora, M., Zobel, M., Coissac, E., Edwards, M.E., Lorenzen, E.D., et al. , 2014. Fifty thousand years of Arctic vegetation and megafaunal diet. Nature 506, 4751. https://doi.org/10.1038/nature12921.CrossRefGoogle ScholarPubMed
Williams, J.W., Jackson, S.T., 2007. Novel climates, no-analog communities, and ecological surprises. Frontiers in Ecology and the Environment 5, 475482. https://doi.org/10.1890/070037.CrossRefGoogle Scholar
Wood, J.R., Wilmshurst, J.M., 2011. Wetland soil moisture complicates the use of Sporormiella to trace past herbivore populations. Journal of Quaternary Science 27, 254259. https://doi.org/10.1002/jqs.1539.CrossRefGoogle Scholar
Wood, J.R., Wilmshurst, J.M., 2013. Accumulation rates or percentages? How to quantify Sporormiella and other coprophilous fungal spores to detect late Quaternary megafaunal extinction events. Quaternary Science Reviews 77, 13. https://doi.org/10.1016/j.quascirev.2013.06.025.CrossRefGoogle Scholar
Zazula, G.D., Froese, D.G., Elias, S.A., Kuzmina, S., Mathewes, R.W., 2007. Arctic ground squirrels of the mammoth-steppe: paleoecology of Late Pleistocene middens (~24 000–29 450 14C yr BP), Yukon Territory, Canada. Quaternary Science Reviews 26, 9791003. https://doi.org/10.1016/j.quascirev.2006.12.006.CrossRefGoogle Scholar
Zazula, G.D., MacPhee, R.D.E., Southon, J., Nalawade-Chavan, S., Reyes, A.V., Hewitson, S., Hall, E., 2017. A case of early Wisconsin “over-chill”: new radiocarbon evidence for early extirpation of western camel (Camelops hesternus) in eastern Beringia. Quaternary Science Review 171, 4857.CrossRefGoogle Scholar
Zimov, S.A., Zimov, N.S., Tikhonov, A.N., Chapin, F.S., 2012. Mammoth steppe: a high-productivity phenomenon. Quaternary Science Reviews 57, 2645. https://doi.org/10.1016/j.quascirev.2012.10.005.CrossRefGoogle Scholar
Supplementary material: File

Conroy et al. Supplementary Materials

Conroy et al. Supplementary Materials

Download Conroy et al. Supplementary Materials(File)
File 1.8 MB