Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-25T23:26:21.114Z Has data issue: false hasContentIssue false

Tectonic and Climatic Inferences from the Terrace Staircase in the Meduna Valley, Eastern Southern Alps, NE Italy

Published online by Cambridge University Press:  20 January 2017

Giovanni Monegato*
Affiliation:
C.N.R., Institute of Geosciences and Earth Resources, Via Valperga Caluso, 35, IT-10125 Torino, Italy
Maria Eliana Poli
Affiliation:
University of Udine, Dept. of Chemistry, Physics and Environment, via Cotonificio, 114, IT-33100 Udine, Italy
*
*Corresponding author at: Institute of Geosciences and Earth Resources - National Research Council, via Valperga Caluso, 35, 10123 Torino, Italy. Tel.: + 39 0116705355, fax: + 39 0116705339. E-mail addresses:g.monegato@csg.to.cnr.it (G. Monegato), eliana.poli@uniud.it (M.E. Poli).

Abstract

Results of stratigraphic and morphotectonic analyses on fluvial terraces at the outlet of the Meduna valley in the eastern Southern Alps are used to investigate on the tectonics and paleoclimate. The Meduna valley, prone to destructive earthquakes, belongs to the front of the eastern Southern Alps, a south-verging fold and thrust belt in evolution from the Middle Miocene to the present, constructed by ENE–WSW striking, SSE-verging medium to low-angle thrusts, gradually propagating in the Venetian–Friulian plain. In the study area, located south of the Periadriatic thrust, the main structural element is the ENE–WSW striking Maniago–M. Jouf thrust system. Seven depositional units, ranging in age from Pliocene to Holocene, and a hierarchy of four numbered terrace complexes were identified. Stratigraphic and geometric relationships between sedimentary units, basal surfaces and terraces allow the reconstruction of the chronology of the depositional events. The study shows that the valley configuration has been shaped during the Pliocene–Quaternary with long-lasting steady intervals, interspaced with periodic tectonic pulses of the thrust front of the eastern Southern Alps. The most recent pulse related to the Maniago thrust shows an upper Pleistocene–Holocene slip rate of about 0.6 mm/yr.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antoine, P., Limondin Lozouet, N., Chausse, C., Lautridou, J.-P., Pastre, J.-F., Auguste, P., Bahain, J.-J., Falgueres, C., and Galehb, B. (2007). Pleistocene fluvial terraces from northern France (Seine, Yonne, Somme): synthesis, and new results from interglacial deposits.. Quaternary Science Reviews 26, 27012723.CrossRefGoogle Scholar
Avigliano, R., Calderoni, G., Monegato, G., and Mozzi, P. (2002). The late Pleistocene–Holocene evolution of the Cellina and Meduna alluvial fans (Friuli NE Italy).. Memorie della Societa Geologica Italiana 57, 133139.Google Scholar
Basili, R., Valensise, G., Vannoli, P., Burrato, P., Fracassi, U., Mariano, S., Tiberti, M.M., and Boschi, E. (2008). The Database of Individual Seismogenic Sources (DISS), version 3: Summarizing 20 years of research on Italy's earthquake geology.. Tectonophysics 453, 2043.CrossRefGoogle Scholar
Bechtold, M., Battaglia, M., Tanner, D.C., and Zuliani, D. (2009). Constraints on the active tectonics of the Friuli/NW Slovenia area from CGPS measurements and three-dimensional kinematic modeling.. Journal of Geophysical Research 114, B033408 10.1029/2008JB005638.CrossRefGoogle Scholar
Benedetti, L., Tapponnier, P., King, G.C.P., Meyer, B., and Manighetti, I. (2000). Growth folding and active thrusting in the Montello region, Veneto, northern Italy.. Journal of Geophysical Research 105, 739766.CrossRefGoogle Scholar
Bigi, G., Castellarin, A., Coli, M. , Dal Piaz, G.V. , and Vai, G.B. (1990). Structural model of Italy,. Sheet 2. Scale 1:500,000. C.N.R. Quaderni, Ricerca scientific, 114.Google Scholar
Bridgland, D.R., and Westaway, R. (2008). Climatically controlled river terrace staircases: a worldwide Quaternary phenomenon.. Geomorphology 98, 285315.CrossRefGoogle Scholar
Bridgland, D.R., Westaway, R., Abou Romieh, M., Daoud, M., Demir, T., Galiatsatos, N., Schreve, D.C., Seyrek, A., Shaw, A., White, T.S., and Whittaker, J. (2012). The River Orontes in Syria and Turkey: downstream variation of fluvial archives in different crustal blocks.. Geomorphology 165–166, 2549.CrossRefGoogle Scholar
Bull, W.B. (1991). Geomorphic Response to Climatic Change. Oxford University Press, New York.Google Scholar
Bull, W.B. (2007). Tectonic Geomorphology of Mountains: A New Approach to Paleoseismology. Blackwell Publishing, .CrossRefGoogle Scholar
Burbank, D.W., and Anderson, R.S. (2001). Tectonic Geomorphology. Blackwell Science, London.Google Scholar
Burrato, P., Poli, M.E., Vannoli, P., Zanferrari, A., Basili, R., and Galadini, F. (2008). Sources of Mw 5 + earthquakes in northeastern Italy and western Slovenia: an updated view based on geological and seismological evidence.. Tectonophysics 453, 157176.CrossRefGoogle Scholar
Caputo, R., Salviulo, L., and Bianca, M. (2008). Late Quaternary activity of the Scorciabuoi Fault (southern Italy) as inferred from morphotectonic investigations and numerical modelling.. Tectonics 27, TC3004 10.1029/2007TC002203.CrossRefGoogle Scholar
Caputo, R., Poli, M.E., and Zanferrari, A. (2010). Neogene–Quaternary tectonic stratigraphy of the eastern Southern Alps, NE Italy.. Journal of Structural Geology 32, 10091027.CrossRefGoogle Scholar
Carraro, F., and Polino, R. (1976). Vistose deformazioni in depositi fluvio-lacustri quaternari a Ponte Racli (Valle del T. Meduna–Prov. Di Pordenone).. Quaderni Gruppo di Studio Quaternario Padano 3, 7788.Google Scholar
Carulli, G.B., Longo Salvador, G., Ponton, M., and Podda, F. (1997). La Dolomia di Forni: evoluzione di un bacino euxinico tardo-Triassico nelle Prealpi Carniche.. Bollettino della Societa Geologica Italiana 116, 95107.Google Scholar
Carulli, G.B., Cozzi, A., Longo Salvador, G., Pernarcic, E., Podda, F., and Ponton, M. (2000). Carta Geologica delle Prealpi Carniche. Pubbl. no 44, Edizioni Museo Friulano Storia Naturale, Udine.Google Scholar
Castellarin, A., and Cantelli, L. (2000). Neo-Alpine evolution of the Southern Eastern Alps.. Journal of Geodynamics 30, 251274.CrossRefGoogle Scholar
Castellarin, A., Nicolich, R., Fantoni, R., Cantelli, L., Sella, M., and Selli, L. (2006). Structure of the lithosphere beneath the Eastern Alps (south sector of the TRANSALP transect).. Tectonophysics 414, 259282.CrossRefGoogle Scholar
Castiglioni, B. (1940). L'Italia nell'et" quaternaria. Carta alla scala 1:200000. Atlante Fisico-Economico d'Italia, TCI, Milano.Google Scholar
Cavallin, A. (1976). Osservazioni sulla tettonica nella conca di Tramonti (Prealpi Carniche).. Rivista Italiana di Paleontologia 82, 285292.Google Scholar
Cavallin, A., and Martinis, B. (1981). Il bacino lacustre della conca di Tramonti (Prealpi Carniche).. Alto 63, 117.Google Scholar
Cavallin, A., and Pirini Radrizzani, C. (1980). Il Miocene trasgressivo del Piancavallo (Prealpi Carniche): margine settentrionale della piattaforma adriatica.. Rivista Italiana di Paleontologia 86, 399416.Google Scholar
Champagnac, J.-D., Molnar, P., Anderson, R.S., Sue, C., and Delacou, B. (2007). Quaternary erosion-induced isostatic rebound in the western Alps.. Geology 35, 195198.CrossRefGoogle Scholar
Champagnac, J.-D., van der Beek, P., Diraison, G., and Dauphin, S. (2008). Flexural isostatic response of the Alps to increased Quaternary erosion recorded by foreland basin remnants, SE France.. Terra Nova 20, 213220.CrossRefGoogle Scholar
Champagnac, J.-D., Schlunegger, F., Norton, K., von Blanckenburg, F., Abbühl, L.M., and Schwab, M. (2009). Erosion-driven uplift of the modern Central Alps.. Tectonophysics 474, 236249.CrossRefGoogle Scholar
D'Agostino, N., Cheloni, D., Mantenuto, S., Selvaggi, G., Michelini, A., and Zuliani, D. (2005). Strain accumulation in the southern Alps (NE Italy) and deformation at the northeastern boundary of Adria observed by CGPS measurements.. Geophysical Research Letters 32, 19 L19306.CrossRefGoogle Scholar
Doglioni, C. (1992). The Venetian Alps thrust belt.McKlay, K.R. Thrust Tectonics Chapman and Hall, London.319324.CrossRefGoogle Scholar
Doglioni, C., and Bosellini, A. (1987). Eoalpine and mesoalpine tectonics in the Southern Alps.. Geologische Rundschau 76, 735754.(Stuttgart).CrossRefGoogle Scholar
Ehlers, J., and Gibbard, P.L. (2004). Quaternary Glaciations–Extent and Chronology–Part I: Europe. Elsevier, Amsterdam, Holland.Google Scholar
Eyles, N., Eyles, C.H., and Miall, A.D. (1983). Lithofacies types and vertical profile models; an alternative approach to the description and environmental interpretation of glacial diamict and diamictite sequences.. Sedimentology 30, 393410.CrossRefGoogle Scholar
Fantoni, R., Catellani, D., Merlini, S., Rogledi, S., and Venturini, S. (2002). La registrazione degli eventi deformativi cenozoici nell'avampaese Veneto-Friulano.. Memorie della Societa Geologica Italiana 57, 301313.Google Scholar
Feruglio, E. (1929). Nuove ricerche sul Quaternario del Friuli.. Giornale di Geologia 4, 136.Google Scholar
Fontana, A., Mozzi, P., and Bondesan, A. (2010). Late Pleistocene evolution of the Venetian–Friulian plain.. Rendiconti Lincei 21, Suppl.1 181196.CrossRefGoogle Scholar
Fontana, A., Monegato, G., Devoto, S., Zavagno, E., Burla, I., and Cucchi, F. (2014a). Evolution of an Alpine fluvioglacial system at the LGM decay: the Cormor megafan (NE Italy).. Geomorphology 204, 136153. 10.1016/j.geomorph.2013.07.034.CrossRefGoogle Scholar
Fontana, A., Mozzi, P., and Marchetti, M. (2014b). Alluvial fans and megafans along the southern side of the Alps.. Sedimentary Geology 301, 150171.CrossRefGoogle Scholar
Galadini, F., Poli, M.E., and Zanferrari, A. (2005). Seismogenic sources potentially responsible for earthquakes with M ≥ 6 in the eastern Southern Alps (Thiene-Udine sector, NE Italy).. Geophysical Journal International 161, 739762.CrossRefGoogle Scholar
Gortani, M. (1959). Carta della glaciazione würminana in Friuli.. Atti Accademia di Scienze Istituto di Bologna 6, 111.Google Scholar
Grandesso, P., and Stefani, C. (1998). La successione aquitaniano-burdigaliana di Piancavallo e Andreis (Alpi Carniche occidentali, Italia).. Atti Ticinesi Scienze della Terra (Serie speciale) 7, 5972.Google Scholar
Harkins, N., and Kirby, E. (2008). Fluvial terrace riser degradation and determination of slip rates on strike–slip faults: an example from the Kunlun fault, China.. Geophysical Research Letters 35, L05406.CrossRefGoogle Scholar
Holbrook, J., and Schumm, S.A. (1999). Geomorphic and sedimentary response of rivers to tectonic deformation: a brief review and critique of a tool for recognizing subtle epeirogenic deformation in modern and ancient settings.. Tectonophysics 305, 287306.CrossRefGoogle Scholar
ISSC–International Stratigraphic Subcommission on Stratigraphic Classification, (1994). International Stratigraphic Guide. Second edition IUGS and The Geological Society of America, Boulder.Google Scholar
Krzyszkowski, D., Przybylski, B., and Badura, J. (2000). The role of neotectonics and glaciations along the Nysa-Kłodzka River in the Sudeten Mountains (southwestern Poland).. Geomorphology 33, 149166.CrossRefGoogle Scholar
Kuhlemann, J. (2000). Post-collisional sediment budget of circum-Alpine basins (Central Europe).. Memorie di Scienze Geologiche Universit" di Padova 52, 191.Google Scholar
Kuhlemann, J., Frisch, W., Székely, B., Dunkl, I., and Kázmér, M. (2002). Post-collisional sediment budget history of the Alps: tectonic versus climatic control.. International Journal of Earth Sciences 91, 818837.Google Scholar
Locati, M., Camassi, R., and Stucchi, M. (2011). DBMI11, the 2011 Version of the Italian Macroseismic Database. Milano, Bologna. http://emidius.mi.ingv.it/DBMI11.Google Scholar
Mancin, N., Di Giulio, A., and Cobianchi, M. (2009). Tectonic vs. climate forcing in the Cenozoic sedimentary evolution of a foreland basin (Eastern Southalpine system, Italy).. Basin Research 21, 799823.CrossRefGoogle Scholar
Marren, P.M. (2005). Magnitude and frequency in proglacial rivers: a geomorphological and sedimentological perspective.. Earth Science Reviews 70, 203251.CrossRefGoogle Scholar
Martinetto, E., Monegato, G., and Vassio, E. (2012). An Early Pleistocene plant assemblage with East European affinity in the Venetian–Friulian basin (NE Italy).. Alpine and Mediterranean Quaternary 25, 91104.Google Scholar
Massari, F., Grandesso, P., Stefani, C., and Zanferrari, A. (1986). The Oligo-Miocene Molasse of the Veneto–Friuli region, Southern Alps.. Giornale di Geologia 48, 235255.Google Scholar
Massari, F., Rio, D., Serandrei Barbero, R., Asioli, A., Capraro, L., Fornaciari, E., and Vergerio, P. (2004). The environment of Venice area in the past two million years.. Palaeogeography, Palaeoclimatology, Palaeoecology 20, 273308.CrossRefGoogle Scholar
Miall, A.D. (2006). The Geology of Fluvial Deposits. Springer-Verlag, Berlin Heidelberg.CrossRefGoogle Scholar
Michelutti, G., Zanolla, S., and Barbieri, S. (2003). Suoli e Paesaggi del Friuli-Venezia Giulia, 1: Pianura e colline del pordenonese.. ERSA – Friuli Venezia Giulia, Servizio della sperimentazione agraria, Ufficio del suolo Pozzuolo del Friuli (UD), .Google Scholar
Monegato, G., and Stefani, C. (2010). Stratigraphy and evolution of a long-lived fluvial system in the southeastern Alps (NE Italy): the Tagliamento conglomerate.. Australian Journal of Earth Sciences 103, 3349.Google Scholar
Monegato, G., and Stefani, C. (2011). Preservation of a long-lived fluvial systemin a mountain chain: the Tagliamento Valley (Southeastern Italian Alps).Davidson, S.K., Leleu, S., North, C.P. From River to Rock Record: The Preservation of Fluvial Sediments and their Subsequent InterpretationSEPM Spec. Publ. 97, 359374.Google Scholar
Monegato, G., Ravazzi, C., Donegana, M., Pini, R., Calderoni, G., and Wick, L. (2007). Evidence of a two-fold glacial advance during the Last Glacial Maximum in the Tagliamento end moraine system (eastern Alps).. Quaternary Research 68, 284302.CrossRefGoogle Scholar
Monegato, G., Lowick, S.E., Ravazzi, C., Banino, R., Donegana, M., and Preusser, F. (2010a). Middle to Late Pleistocene chronology and palaeoenvironmental evolution of the south-eastern Alpine Foreland: the Valeriano Creek succession (NE Italy).. Journal of Quaternary Science 25, 617632.CrossRefGoogle Scholar
Monegato, G., Stefani, C., and Zattin, M. (2010b). From present rivers to old terrigenous sediments: the evolution of the drainage system in the eastern Southern Alps.. Terra Nova 22, 218226.CrossRefGoogle Scholar
Mozzi, P. (2005). Alluvial plain formation during the Late Quaternary between the southern Alpine margin and the Lagoon of Venice (northern Italy).. Geografia Fisica e Dinamica Quaternaria 7, 219230.Google Scholar
Muttoni, G., Ravazzi, C., Breda, M., Pini, R., Laj, C., Kissel, C., Mazaud, A., and Garzanti, E. (2007). Magnetostratigraphic dating of an intensification of glacial activity in the southern Italian Alps during Marine Isotope Stage 22.. Quaternary Research 67, 161173.CrossRefGoogle Scholar
Nesci, O., and Savelli, D. (1990). Valley terraces in the Northern Marche Apennines (Central Italy): cyclic deposition and erosion.. Giornale di Geologia 52, 189195.Google Scholar
Paiero, G., and Monegato, G. (2003). The Pleistocene evolution of Arzino alluvial fan and western part of Tagliamento Morainic Amphitheatre (Friuli, Ne Italy).. Il Quaternario 16, 185193.Google Scholar
Pini, R., Ravazzi, C., and Donegana, M. (2009). Pollen stratigraphy, vegetation and climate history of the last 215 ka in the Azzano Decimo core (plain of Friuli, north-eastern Italy).. Quaternary Science Reviews 28, 12681290.CrossRefGoogle Scholar
Poli, M.E., Zanferrari, A., and Monegato, G. (2009). Geometria, cinematica e attivit" pliocenico-quaternaria del sistema di sovrascorrimenti Arba-Ragogna (Alpi Meridionali orientali, Italia NE).. Rendiconti Online della Societ" Geologica Italiana 5, 172175.Google Scholar
Ponton, M. (1989). Nuovi dati sulla trasgressione miocenica (Casasola–Prealpi Carniche).. Gortania – Atti Museo Friulano di Storia Naturale 11, 2538.Google Scholar
Ponza, A., Pazzaglia, F.J., and Picotti, V. (2010). Thrust–fold activity at the mountain front of the Northern Apennines (Italy) from quantitative landscape analysis.. Geomorphology 123, 211231.CrossRefGoogle Scholar
Preusser, F., Reitner, J., and Schlüchter, C. (2010). Distribution, geometry, age and origin of overdeepened valleys and basins in the Alps and their foreland.. Swiss Journal of Geosciences 103, 407426.CrossRefGoogle Scholar
Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk Ramsey, C., Buck, C.E., Cheng, H., Edwards, R.L., Friedrich, M., Grootes, P.M., Guilderson, T.P., Haflidason, H., Hajdas, I., Hatté, C., Heaton, T.J., Hoffmann, D.L., Hogg, A.G., Hughen, K.A., Kaiser, K.F., Kromer, B., Manning, S.W., Niu, M., Reimer, R.W., Richards, D.A., Scott, E.M., Southon, J.R., Staff, R.A., Turney, C.S.M., and van der Plicht, J. (2013). IntCal13 andMarine13 radiocarbon age calibration curves 0–50,000 years cal BP.. Radiocarbon 55, 18691887.CrossRefGoogle Scholar
Scardia, G., De Franco, R., Muttoni, G., Rogledi, S., Caielli, G., Carcano, C., Sciunnach, D., and Piccin, A. (2012). Stratigraphic evidence of a Middle Pleistocene climate-driven flexural uplift of the Alps.. Tectonics 31, TC6004 10.1029/2012TC003108.CrossRefGoogle Scholar
Scardia, G., Festa, A., Monegato, G., Pini, R., Rogledi, S., Tremolada, F., and Galadini, F. (2014). Evidence for late Alpine tectonics in the Lake Garda area (northern Italy) and seismogenic implications.. Geological Society of America Bulletin 10.1130/B30990.1.Google Scholar
Stefani, C. (1982). Geologia dei dintorni di Fanna e Cavasso Nuovo (Prealpi Carniche).. Memorie di Scienze Geologiche 35, 203212.Google Scholar
Stefanini, G. (1912). Sull'antica idrografia dei bacini della Meduna e del Colvera in Friuli.. Rivista Geografica Italiana 19, 16.Google Scholar
Sternai, P., Herman, F., Champagnac, J.-D., Salcher, B., Fox, M., and Willett, S. (2012). The pre-glacial topography of the Alps.. Geology 40, 10671079.CrossRefGoogle Scholar
Stuiver, M., and Reimer, P.J. (1993). Extended 14C database and revised CALIB radiocarbon calibration program.. Radiocarbon 35, 215230.CrossRefGoogle Scholar
Surian, N., and Pellegrini, G.B. (2000). Paraglacial sedimentation in the Piave valley (Eastern Alps, Italy): an example of fluvial processes conditioned by glaciation.. Geografia Fisica e Dinamica Quaternaria 23, 8792.Google Scholar
van Husen, D. (1987). Die Ostalpen und ihr Vorland in der letzten Eiszeit (Würm).. Geologische Bundesanstalt, Vienna.Google Scholar
Venturini, C. (1985). I depositi quaternari di Ponte Racli (PN, Prealpi Friulane).. Gortania, Atti Museo Friulano di Storia Naturale 7, 3758.Google Scholar
Venturini, C., Discienza, K., and Astori, A. (2013). Sedimentologia e tettonica della successione clastica della Val Meduna (Prealpi Carniche, PN).. Gortania, Atti Museo Friulano di Storia Naturale 34, 2012 5178.Google Scholar
Venzo, S. (1977). I depositi quaternari e del Neogene superiore nella bassa valle del Piave da Quero al Montello e del Paleopiave nella valle del Soligo (Treviso).. Memorie di Scienze Geologiche 30, 162.Google Scholar
Venzo, G.A., Ulcigrai, F., and Cucchi, F. (1975). Studio geologico per i serbatoi di laminazione delle piene sul T. Meduna a La Clevata e a Colle.. Studi Trentini di Scienze Naturali Sez.A 52, 201221.Google Scholar
Viveen, W., van Balen, R.T., Schoorl, J.M., Veldkamp, A., Temme, A.J.A.M., and Vidal-Romani, J.R. (2012). Assessment of recent tectonic activity on the NW Iberian Atlantic Margin by means of geomorphic indices and field studies of the Lower Miño River terraces.. Tectonophysics 544–545, 1330.CrossRefGoogle Scholar
Wegmann, K.W., and Pazzaglia, F.J. (2009). Late Quaternary fluvial terraces of the Romagna and Marche Apennines, Italy: climatic, lithologic, and tectonic controls on terrace genesis in an active orogen.. Quaternary Science Reviews 28, 137165.CrossRefGoogle Scholar
Westaway, R., and Bridgland, D.R. (2014). Relation between alternations of uplift and subsidence revealed by Late Cenozoic fluvial sequences and physical properties of the continental crust.. Boreas 43, 505527.CrossRefGoogle Scholar
Westaway, R., Maddy, D., and Bridgland, D.R. (2002). Flow in the lower continental crust as amechanismfor the Quaternary uplift of south-east England: constraints from the Thames terrace record.. Quaternary Science Reviews 21, 559603.CrossRefGoogle Scholar
Westaway, R., Bridgland, D.R., Sinha, R., and Demir, T. (2009). Fluvial sequences as evidence for landscape and climatic evolution in the Late Cenozoic: a synthesis of data from IGCP 518.. Global and Planetary Change 68, 237253.CrossRefGoogle Scholar
Zanferrari, A., Avigliano, R., Grandesso, P., Monegato, G., Paiero, G., Poli, M.E., and Stefani, C. (2008a). Geological map and explanatory notes of the Italian Geological Map at the scale 1:50.000: Sheet 065 “Maniago”. APAT-Servizio Geologico d'Italia – Regione Autonoma Friuli Venezia Giulia.. http://www.isprambiente.gov.it/Media/carg/friuli.html.Google Scholar
Zanferrari, A., Avigliano, R., Fontana, A., and Paiero, G. (2008b). Geological map and explanatory notes of the Italian Geological Map at the scale 1:50.000: Sheet 086 “San Vito al Tagliamento".APAT-Servizio Geologico d'Italia – Regione Autonoma Friuli Venezia Giulia. http://www.isprambiente.gov.it/Media/carg/friuli.html.Google Scholar
Zanferrari, A., Masetti, D., Monegato, G., and Poli, M.E. (2013). Geological map and explanatory notes of the Italian Geological Map at the scale 1:50.000: Sheet 049 “Gemona del Friuli".. ISPRA – Servizio Geologico d'Italia – Regione Autonoma Friuli Venezia Giulia, 262pp. http://www.isprambiente.gov.it/Media/carg/friuli.html.Google Scholar
Zenari, S. (1927). Carta Geologica delle Tre Venezie, Foglio “Maniago”. Ufficio Idrografico Regio Magistrato Acque di Venezia, Venezia.Google Scholar
Zenari, S. (1929). Note illustrative della Carta Geologica delle Tre Venezie Foglio “Maniago”. Ufficio Idrografico Regio Magistrato Acque di Venezia, Padova.Google Scholar