Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-15T19:00:08.143Z Has data issue: false hasContentIssue false

Several distinct wet periods since 420 ka in the Namib Desert inferred from U-series dates of speleothems

Published online by Cambridge University Press:  20 January 2017

Mebus A. Geyh*
Affiliation:
University of Marburg, Germany
Klaus Heine
Affiliation:
Institute of Geography, Regensburg University, Germany
*
*Corresponding author at: Rübeland 12, 29308 Winsen (Aller), Germany. Tel.: + 49 5146 987123. E-mail address:mebus.geyh@t-online.de (M.A. Geyh).

Abstract

The scarcity of numerical dates of the arid areas in southern Africa is a challenge for reconstructing paleoclimate. This paper presents a chronological reconstruction in the central part of the Namib Desert, Namibia, for the last 420,000 yr. It is based on 230Th/U dates (TIMS) from a large stalagmite and a thick flowstone layer in a small cave located in the hyper-arid central Namib Desert. The results provide for the first time evidence of three or possibly four succeeding wet periods of decreasing intensity since 420 ka through which speleothem deposited at approximately 420–385 ka, 230–207 ka and 120–117 ka following the 100-ka Milankovitch cycle. Speleothem growth was not recorded for the Holocene. These wet periods interrupted the predominantly dry climate of the Namib Desert and coincided with wet phases in deserts of the northern hemisphere in the Murzuq Basin, Sahara, the Negev, Israel, the Nafud Desert, Saudi Arabia, and the arid northern Oman, Arabian Peninsula.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Besler, H., Blümel, W.-D., Heine, K., Hüser, K., Leser, H., and Rust, U. Geomorphogenese und Paläoklima Namibias. Eine Problemskizze. Erde 125, (1994). 139165.Google Scholar
Bierman, P., and Caffee, M. Slow rates of rock surface erosion and sediment production across the Namib Desert and escarpment, Southern Africa. American Journal of Science 301, (2001). 326358.CrossRefGoogle Scholar
Bischoff, J.L., and Fitzpatrick, J.A. U-series dating of impure carbonates: an isochron technique using total-sample dissolution. Geochimica et Cosmochimica Acta 55, (1991). 543554.CrossRefGoogle Scholar
Brook, E.J. Atmospheric Science: Tiny Bubbles Tell All. Science 310, (2005). 12851287.CrossRefGoogle ScholarPubMed
Brook, G.A., Cowart, J.B., and Marais, E. Wet and dry periods in the southern African summer rainfall zone during the last 300 kyr from speleothem, tufa and sand dune age data. Palaeoecology of Africa 24, (1996). 147158.Google Scholar
Brook, G.A., Embabi, N.S., Ashour, M.M., Edwards, R.L., Cheng, H., Cowart, J.B., and Dabous, A.A. Quaternary environmental change in the Western Desert of Egypt: evidence from cave speleothems, spring tufas, and playa sediments. Zeitschrift für Geomorphologie N.F., Supplement 131, (2003). 5987.Google Scholar
Burns, S.J., Fleitmann, D., Matter, A., Neff, U., and Mangini, A. Speleothem evidence from Oman for continental pluvial events during interglacial periods. Geology 29, (2001). 623625.2.0.CO;2>CrossRefGoogle Scholar
Chen, H., Edwards, R.L., Hoff, J., Gallup, C.D., Richards, D.A., and Asmeron, Y. The half-lives of uranium-234 and thorium-230. Chemical Geology 169, 1–2 (2000). 1733.CrossRefGoogle Scholar
Chen, M.-T., Chang, Yuan-Pin, Chang, Cheng-Chieh, Wang, Li-Wen, Wang, Chung-Ho, and Ein-Fen, Yu. Late Quaternary sea-surface temperature variations in the southeast Atlantic: a planktic foraminifer faunal record of the past 600 000 yr (IMAGES II MD962085). Marine Geology 180, (2002). 163181.CrossRefGoogle Scholar
Collins, J.A. Glacial to Holocene Hydroclimate In Western Africa: Insights from Organic and Major Element Geochemistry of Hemipelagic Atlantic Ocean Sediments. PhD Thesis (July 2011). Faculty of Geosciences at the University of Bremen, (108 pp.)Google Scholar
Collins, J.A., Schefuß, E., Heslop, D., Mulitza, S., Prange, M., Zabel, M., Tjallingii, R., Dokken, T.M., Huang, E., Mackensen, A., Schulz, M., Tian, J., Zarriess, M., and Wefer, G. Interhemispheric symmetry of the tropical African rain belt over the past 23,000 years. Nature Geoscience 4, (2011). 4245.CrossRefGoogle Scholar
Collins, J.A., Schefuß, E., Mulitza, S., Prange, M., Werner, M., Tharammal, T., Paul, A., and Wefer, G. Estimating the hydrogen isotopic composition of past precipitation using leaf-waxes from western Africa. Quaternary Science Reviews 65, (2013). 88101.CrossRefGoogle Scholar
Dreybroth, W., and Franke, H.W. Wachstumsgeschwindigkeiten und Durchmesser von Kerzenstalagmiten. Höhle 38, 1 (1987). 16.Google Scholar
Droxler, A.W., and Farrell, J.W. Marine Isotope Stage 11 (MIS 11): new insights for a warm future. Global Planetary Change 24, (2000). 15.CrossRefGoogle Scholar
Eckardt, F.D., Soderberg, K., Coop, L.J., Muller, A.A., Vickery, K.J., Grandin, R.D., Jack, C., Kapalanga, T.S., and Henschel, J. The nature of moisture at Gobabeb, in the central Namib Desert. Journal of Arid Environment 93, (2013). 719.CrossRefGoogle Scholar
Fleitmann, D., and Matter, A. The speleothem record of climate variability in southern Arabia. Comptes Rendus Geosciences 341, (2009). 633642.CrossRefGoogle Scholar
Fleitmann, D., Burns, S.J., Neff, U., Mangini, A., and Matter, A. Changing moisture sources over the last 330,000 years in northern Oman from fluid-inclusion evidence in speleothems. Quaternary Research 60, (2003). 223232.CrossRefGoogle Scholar
Gasse, F., Chalié, F., Vincens, A., Williams, M.A.J., and Williamson, D. Climatic patterns in equatorial and southern Africa from 30,000 to 10,000 years ago reconstructed from terrestrial and near-shore proxy data. Quaternary Science Reviews 27, (2008). 23162340.CrossRefGoogle Scholar
Geyh, M.A. Selection of suitable data sets improves 230Th/U dates of dirty material. Geochronometria 30, (2008). 6977. http://dx.doi.org/10.2478/v10003-008-0001-1CrossRefGoogle Scholar
Geyh, M.A., and Franke, H.W. Zur Wachstumsgeschwindigkeit von Stalagmiten. Atompraxis 16, (1970). 13.Google Scholar
Geyh, M.A., and Müller, H. Numerical 230Th/U dating and a palynological review of the Holsteinian/Hoxnian Interglacial. Quaternary Science Review 24, (2005). 18611872.CrossRefGoogle Scholar
Geyh, M.A., and Thiedig, F. The Middle Pleistocene Al Mahrúqah Formation in the Murzuq Basin, northern Sahara, Libya evidence for orbitally-forced humid episodes during the last 500,000 years. Palaeogeography, Palaeoclimatolology, Palaeoecolology 257, (2008). 121.CrossRefGoogle Scholar
Heine, K. Paläoklima und Reliefentwicklung der Namibwüste im überregionalen Vergleich. Geomethodica 16, (1991). 5392.Google Scholar
Heine, K. On the ages of humid Late Quaternary phases in southern African arid areas (Namibia, Botswana). Palaeoecolology of Africa 23, (1992). 149164.Google Scholar
Heine, K. Climatic change over the past 135,000 years in the Namib Desert (Namibia) derived from proxy data. Palaeoecology of Africa 25, (1998). 171198.Google Scholar
Heine, K., and Geyh, M.A. Radiocarbon dating of speleothem from the Rössing cave, Namib desert, and palaeoclimatic implications. Vogel, J.C. Late Cainozoic Palaeoclimates of the Southern Hemisphere. (1984). Balkema, Rotterdam. 465470.Google Scholar
Heine, K., and Völkel, J. Soil clay minerals in Namibia and their significance for the terrestrial and marine past global change research. African Study Monographs Supplements Issue 40, (2010). 3150.Google Scholar
Heine, K., and Walter, R. Gypcretes of the central Namib Desert (Namibia). Palaeoecology of Africa 24, (1996). 173201.Google Scholar
Howard, W. A warm future in the past. Nature 388, (1997). 418419.CrossRefGoogle Scholar
Imbrie, J., Hays, J.D., Martinson, D.G., McIntyre, A., Mix, A.C., Morley, J.J., Pisias, N.G., Prell, W.L., and Shackleton, N.J. The orbital theory of Pleistocene climate: support from a revised chronology of the marine 18O record. Berger, A.L., Imbrie, J., Hays, J., and Kukla, G. Milankovitch and Climate. (1984). Reidel, Dordrecht. 269305.Google Scholar
Ivanovich, M., and Harmon, R.S. Uranium Series Disequilibrium: Applications to Earth, Marine and Environmental Sciences. (1992). Clarendon Press, Oxford. (920 pp.)Google Scholar
Jahn, B., Donner, B., Müller, P.J., Röhl, U., Schneider, R.R., and Wefer, G. Pleistocene variations in dust input and marine productivity in the northern Benguela Current: evidence of evolution of global glacial–interglacial cycles. Palaeogeography, Palaeoclimatology, Palaeoecology 193, (2003). 515533.CrossRefGoogle Scholar
Kaufman, A. An evaluation of several methods for determining 230Th/U ages in impure carbonates. Geochimica et Cosmochimica Acta 57, (1993). 23032317.CrossRefGoogle Scholar
Kaufman, A., and Broecker, W. Comparison of 230Th and 14C ages for carbonate materials from lakes Lahontan and Bonneville. Journal of Geophysical Research 70, 16 (1965). 40394054.CrossRefGoogle Scholar
Ku, T.L., and Liang, Z.Ch. The dating of impure carbonates with decay-series isotopes. Nuclear Instrumuments and Methods in the Physical Research 223, (1984). 563571.CrossRefGoogle Scholar
Lancaster, J., Lancaster, N., and Seely, M.K. Climate of the central Namib Desert. Madoqua 14, 7 (1984). 769782.Google Scholar
Lee-Thorp, J., and Schneider, R. Linking the continental environmental Quaternary history of southern Africa with ocean currents and Antarctica. PAGES News 10, 2 (2002). 2 CrossRefGoogle Scholar
Lisiecki, L.E., and Raymo, M.E. A Pliocene–Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, (2005). PA1003 http://dx.doi.org/10.1029/2004PA001071Google Scholar
Little, M.G., Schneider, R.R., Kroon, D., Price, B., Summerayes, C.P., and Segal, M. Tradewind forcing of upwelling, seasonality, and Heinrich events as a response to sub-Milankovitch climate variability. Paleooceanography 12, (1997). 568576.CrossRefGoogle Scholar
Mendelsohn, J., Jarvis, A., Roberts, C., and Robertson, T. Atlas of Namibia. A Portrait of the Land and Its People. (2002). Philip Publ, Cape Town. (200 pp.)Google Scholar
Ollier, C.D. Outline geological and geomorphic history of the central Namib Desert. Madoqua 10, 3 (1977). 207212.Google Scholar
Osmond, J.K., May, J.P., and Tanner, W.F. Age of the Cape Kennedy barrier and lagoon complex. Journal of Geophysical Research 75, 2 (1970). 469479.CrossRefGoogle Scholar
Partridge, T.C., and Maud, R.R. Geomorphic evolution of Southern Africa since the Mesozoic. South African Journal of Geology 90, (1987). 179208.Google Scholar
Pichevin, L., Cremer, M., Giraudeau, J., and Bertrand, P. A 190 ky record of lithogenic grain-size on the Namibian slope: forging a tight link between past wind-strength and coastal upwelling dynamics. Marine Geology 218, (2005). 8196.CrossRefGoogle Scholar
Roberts, D.L., Karkanas, P., Jacobs, Z., Marean, C.W., and Roberts, R.G. Melting ice sheets 400,000 yr ago raised sea level by 13 m: past analogue for future trends. Earth and Planetary Science Letters 357, 358 (2012). 226237.CrossRefGoogle Scholar
Rosenberg, T.M., Preusser, F., Risberg, J., Plikk, A., Kadi, K.A., Matter, A., and Fleitmann, D. Middle and Late Pleistocene humid periods recorded in palaeolake deposits of the Nafud desert, Saudi Arabia. Quaternary Science Reviews 70, (2013). 109123.CrossRefGoogle Scholar
Rosholt, J.N. 230Th/U dating of travertine and caliche rinds. Geological Society of America 8, (1976). 1076 (Abstracts with Programs) Google Scholar
Schachtschneider, K., and February, E.C. The relationship between fog, floods, groundwater and tree growth along the lower Kuiseb River in the hyperarid Namib. Journal of Arid Environments 74, (2010). 16321637.CrossRefGoogle Scholar
Scholz, D., and Hoffmann, D. 230Th/U-dating of fossil corals and speleothems. E&G: Quaternary Science Journal 57, 1–2 (2008). 5276.Google Scholar
Seely, M., and Pallett, J. Namib. Secrets of a Desert Uncovered. (2008). Venture Publications, Windhoek. 202 Google Scholar
Selby, M.J., Hendy, C.H., and Seely, M.K. A Late Quaternary lake in the central Namib Desert, southern Africa, and some implications. Palaeogeography, Palaeoclimatology, Palaeoecology 26, (1979). 3741.CrossRefGoogle Scholar
Stone, A.E.C., Thomas, D.S.G., and Viles, H.A. Late Quaternary palaeohydrological changes in the northern Namib Sand Sea: new chronologies using OSL dating of interdigitated aeolian and water-lain interdune deposits. Palaeogeography, Palaeoclimatology, Palaeoecology 288, (2010). 3553.CrossRefGoogle Scholar
Stone, A.E.C., Viles, H.A., Thomas, L., and van Calsteren, P. Quaternary tufa deposition in the Naukluft Mountains, Namibia. Journal of Quaternary Science 25, (2010). 13601372. http://dx.doi.org/10.1002/jqs.1435 (IP/937/1106) GCCrossRefGoogle Scholar
Strahler, A.N. Physical Geography. (1960). Wiley and Sons, New York — London. 534 Google Scholar
Stuut, J.-B.W., and Lamy, F. Climate variability at the southern boundaries of the Namib (southwestern Africa) and Atacama (northern Chile) coastal deserts during the last 120,000 yr. Quaternary Research 62, (2004). 301309.CrossRefGoogle Scholar
Stuut, J.-B.W., Maarten, A.P., Schneider, R.R., Weltje, G.J., Jansen, J.H.F., and Postma, G. A 300-kyr record of aridity and wind strength in southwestern Africa: inferences from grain-size distributions of sediments on Walvis Ridge, SE Atlantic. Marine Geology 180, (2002). 221233.CrossRefGoogle Scholar
Stuut, J.B.W., Temmesfeld, F., and De Deckker, P. Late Quaternary aridity changes in the winter-rain areas on the southern hemisphere: inferences from the marine sediment archive. ADOM-MARUM Dust Workshop 2011, Abstract, Short Presentations and Posters. (2011). 52 Google Scholar
Szabo, B.J., Haynes, C.V. Jr., and Maxwell, T.A. Ages of Quaternary pluvial episodes determined by uranium-series and radiocarbon dating of lacustrine deposits of Eastern Sahara. Palaeogeography, Palaeoclimatology, Palaeoecology 113, (1995). 227242.CrossRefGoogle Scholar
Thiedig, F., Oezen, D., El-Chair, M., and Geyh, M.A. Evidence of a large Quaternary lacustrine palaeo-lakes in Libya and their importance for climate change in north Africa. Sola, M.A., and Worsley, D. Proc. Regional Aquifer Systems in Arid Zones — Managing Non-Renewable Resources. Geological Exploration in Murzuq Basin, Chapter 5 (2000). Elsevier Science, Amsterdam. 89116.CrossRefGoogle Scholar
Vaks, A., Bar-Matthews, M., Matthews, A., Ayalon, A., and Frumkin, A. Middle-Late Quaternary paleoclimate of northern margins of the Saharan-Arabian Desert: reconstruction from speleothems of Negev Desert, Israel. Quaternary Science Reviews 29, (2010). 26472662.CrossRefGoogle Scholar
Van der Wateren, F.M., and Dunai, T.J. Late Neogene passive margin denudation history — cosmogenic isotope measurements from the central Namib Desert. Global and Planetary Change 30, (2001). 271307.CrossRefGoogle Scholar
Vermeesch, P., Fenton, C.R., Kober, F., Wiggs, G.F.S., Bristow, C.S., and Xu, S. Sand residence times of one million years in the Namib Sand Sea from cosmogenic nuclides. Nature Geoscience 3, (2010). 862865.CrossRefGoogle Scholar
Wakshal, E., and Yaron, F. 234U/238U disequilibrium in waters of the Judea group (Cenomanian–Turonian) aquifer in Galilee northern Israel. Isotope Techniques in Groundwater Hydrology 1974 (II). (1974). IAEA, Vienna. 151176.Google Scholar
Ward, J., Seely, M., and Lancaster, N. On the antiquity of the Namib. South African Journal of Science 79, (1983). 175183.Google Scholar
Wefer, G., Mulitza, S., and Ratmeyer, V. The South Atlantic in the Late Quaternary: Reconstruction of Material Budgets and Current Systems. (2004). Springer, Berlin-Heidelberg-New York. 722 Google Scholar
Yaalon, D.H., and Ward, J.D. Observations on calcrete and recent calcic horizons in relation to landforms, central Namib Desert. Palaeoecology of Africa 15, (1982). 183186.Google Scholar