Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-25T20:40:49.580Z Has data issue: false hasContentIssue false

The rock shelter Abrigo del Molino (Segovia, Spain) and the timing of the late Middle Paleolithic in Central Iberia

Published online by Cambridge University Press:  02 May 2018

Martin Kehl*
Affiliation:
Institute of Geography, University of Cologne, Albertus-Magnus-Platz, 50923 Cologne, Germany
David Álvarez-Alonso
Affiliation:
Department of Prehistory and Archaeology, Universidad Nacional de Educación a Distancia (UNED), Centro Asociado de Asturias, Av. del Jardín Botánico, 1345, 33203 Gijón, Spain
María de Andrés-Herrero
Affiliation:
Institute of Prehistoric Archaeology, University of Cologne, Albertus-Magnus-Platz, 50923 Cologne, Germany/Neanderthal Museum, Talstraße 300, 40822 Mettmann, Germany
Andrés Díez-Herrero
Affiliation:
Geological Survey of Spain - Instituto Geológico y Minero de España (IGME), Calle de Ríos Rosas, 23, 28003 Madrid, Spain
Nicole Klasen
Affiliation:
Institute of Geography, University of Cologne, Albertus-Magnus-Platz, 50923 Cologne, Germany
Janet Rethemeyer
Affiliation:
Institute of Geology and Mineralogy, University of Cologne, Albertus-Magnus-Platz, 50923 Cologne, Germany
Gerd-Christian Weniger
Affiliation:
Institute of Prehistoric Archaeology, University of Cologne, Albertus-Magnus-Platz, 50923 Cologne, Germany/Neanderthal Museum, Talstraße 300, 40822 Mettmann, Germany
*
*Corresponding author at: Institute of Geography, University of Cologne, Albertus Magnus Platz, 50923 Cologne, Germany. E-mail address: kehlm@uni-koeln.de (M. Kehl).

Abstract

The timing of the late Middle Paleolithic and late disappearance of Neanderthals in the Iberian Peninsula are hotly debated subjects in Paleolithic archeology. Several studies suggested a late survival in South and Central Iberia until about 32 ka, but were probably subject to significant age underestimation due to contamination of dating samples, undiagnostic lithic assemblages, and/or lack of stratigraphic integrity. We conducted a radiocarbon and luminescence-dating study backed by detailed sedimentological and micromorphological investigations at the newly discovered rock shelter sequence of Abrigo del Molino (Central Spain). Accumulation of the sediment sequence was rapid. It started with deposition of paleoflood slack-water deposits at around 48 ka and continued until about 41 ka with deposition of colluvial and detrital sediments. These contain two Mousterian levels, which place the latest Neanderthal occupation at around 45 to 41 ka, i.e., between Heinrich Stadials 5 and 4, and probably during a time of climate amelioration. Abrigo del Molino thus provides a detailed and chronologically well-constrained record of Late Neanderthal presence and morphodynamic change in Central Iberia during times of millennial-scale climate changes. The site gives further evidence for an early disappearance of Neanderthals in Central Iberia.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alcaraz-Castaño, M., López Recio, M., Roca, M., Tapias, F., Rus, I., Baena, J., Morín, J., Pérez-González, A., Santonja, M., 2012. Nuevos datos sobre el yacimiento paleolítico de las Delicias: un taller solutrense en el valle del Manzanares (Madrid, España). Espacio, Tiempo y Forma. Serie I, Nueva época, Prehistoria y Arqueología 5, 427446.Google Scholar
Alcaraz-Castaño, M., Weniger, G.-C., Alcolea, J.J., Andrés-Herrero, M., de, Baena, J., de Balbín, R., Bueno, P., et al., 2015. Regreso a la cueva de Los Casares (Guadalajara): un nuevo proyecto de investigación para el yacimiento del Seno A. ARPI 02. Arqueología y Prehistoria del Interior Peninsular, 6889.Google Scholar
Alcaraz-Castaño, M., Alcolea-González, J., Kehl, M., Albert, R.M., Baena-Preysler, J., Balbín-Behrmann, R. de, Cuartero, F., Cuenca-Bescós, G., Jiménez-Barredo, F., López-Sáez, J.A., Piqué, R., Rodríguez-Antón, D., Yravedra, J., Weniger, G.C., 2017. A context for the last Neandertals of interior Iberia: Los Casares cave revisited. PLoS ONE 12(7), e0180823.Google Scholar
Alcolea, J., Balbín, R., García, M.A., García, M.A., Jiménez, P.J., Aldecoa, A., Casado, A.B., et al., 1997. Avance al estudio del poblamiento paleolítico del Alto Valle del Sorbe (Muriel, Guadalajara). In: Behrmann, R.B., Bueno Ramírez, P. (Eds.) Actas del II Congreso de Arqueología Peninsular 1996, Zamora. Fundación Rei Afonso Henriques, Zamora, pp. 201218.Google Scholar
Álvarez-Alonso, D., Andrés-Herrero, M., de, Díez-Herrero, A., Medialdea, A., Rojo, J., 2016. Neanderthal settlement in central Iberia: geo-archaeological research in the Abrigo del Molino site, MIS 3 (Segovia, IP). Quaternary International. http://dx.doi.org/10.1016/j.quaint.2016.05.027.Google Scholar
Álvarez-Alonso, D., Andrés-Herrero, M., de, Díez-Herrero, A., Rojo, J., 2013. El Abrigo del Molino (Segovia, España). Ocupaciones neandertales en el norte del Sistema Central. In: Baena, R., Fernández, J.J., Guerrero, I. (Eds.), El Cuaternario ibérico: investigación en el siglo XXI. Pinelo Talleres Gráficos, Sevilla, pp. 9194.Google Scholar
Álvarez-Alonso, D., Andrés-Herrero, M., de, Díez-Herrero, A., Rojo, J., 2014a. El Abrigo del Molino (Segovia, España). Un nuevo yacimiento musteriense en el interior de la Península Ibérica. Actas de las III Jornadas de jóvenes investigadores del valle del Duero 2013. Glyphos Publicaciones, Zamora, pp. 1729.Google Scholar
Álvarez-Alonso, D., Andrés-Herrero, M., de, Díez-Herrero, A., Rojo, J., Medialdea, A., Benito, G., Vegas, J., 2014b. Geoarqueología del yacimiento musteriense del Abrigo del Molino (Segovia). In: Schnabel, S., Gómez-Gutiérrez, A. (Eds.), Avances de la Geomorfología en España 2012–2014. XIII Reunión Nacional de Geomorfología, Cáceres. pp. 446449.Google Scholar
Angelucci, D.E., Zilhão, J., 2009. Stratigraphy and formation processes of the upper Pleistocene deposit at Gruta da Oliveira, Almonda karstic system, Torres Novas, Portugal. Geoarchaeology 24, 277310.Google Scholar
Arnold, L.J., Demuro, M., Navazo, M., Benito-Calvo, A., Pérez-González, A., 2013. OSL dating of the Middle Palaeolithic Hotel California site, Sierra de Atapuerca, north-central Spain. Boreas 42, 285305.Google Scholar
Arsuaga, J.L., Baquedano, E., Pérez-González, A., Sala, N., Quam, R.M., Rodríguez, L., García, R., et al., 2012. Understanding the ancient habitats of the last-interglacial (late MIS 5) Neanderthals of central Iberia: paleoenviromental and taphonomic evidence from the Cueva del Camino (Spain) site. Quaternary International 275, 5575.Google Scholar
Arsuaga, J.L., Gómez-Olivencia, A., Sala, N., Martínez-Pillado, V., Pablos, A., Bonmatí, A., Pantoja-Pérez, A., et al., 2017. Evidence of paleoecological changes and Mousterian occupations at the Galería de las Estatuas site, Sierra de Atapuerca, northern Iberian plateau, Spain. Quaternary Research 88, 345367.Google Scholar
Auclair, M., Lamothe, M., Huot, S., 2003. Measurement of anomalous fading for feldspar IRSL using SAR. Radiation Measurements 37, 487492.Google Scholar
Baquedano, E., Márquez, B., Laplana, C., Arsuaga, J.L., Pérez González, A., 2014. Los yacimientos de Pinilla del Valle (Madrid, España). In: Sala Ramos, R. (Ed.), Los cazadores recolectores del Pleistoceno y del Holoceno en Iberia y el Estrecho de Gibraltar: estado actual del conocimiento del registro arqueológico. Fundación Atapuerca, Burgos, pp. 577584.Google Scholar
Barandiarán Maestu, I., 1969. Yacimiento musteriense de la Cueva de Los Casares (Guadalajara). In: Secretario General de Congresos Arqueológicos Nacionales (Ed.), X Congreso Nacional de Arqueología. Universidad de Zaragoza, Zaragoza, pp. 153158.Google Scholar
Beckmann, T., 1997. Präparation bodenkundlicher Dünnschliffe für mikromorphologische Untersuchungen. Hohenheimer Bodenkundliche Hefte 40, 89103.Google Scholar
Bicho, N., Marreiros, J., Cascalheira, J., Pereira, T., Haws, J., 2015. Bayesian modeling and the chronology of the Portuguese Gravettian. Quaternary International 359–360, 499509.CrossRefGoogle Scholar
Bird, M.I., Ayliffe, L.K., Fifield, L.K., Turney, C.M., Cresswell, R.G., Barrows, T.T., David, B., 1999. Radiocarbon dating of “old” charcoal using a wet oxidation, stepped-combustion procedure. Radiocarbon 41, 127140.Google Scholar
Bischoff, J.L., Soler, N., Maroto, J., Julià, R., 1989. Abrupt Mousterian/Aurignacian boundary at c. 40 ka BP: accelerator 14C dates from L’Arbreda Cave (Catalunya, Spain). Journal of Archaeological Science 16, 563576.Google Scholar
Bradtmöller, M, Arrizabalaga, A., Calvo, A., Iriarte-Chiapusso, M.-J., de la Peña, P., 2015. From Upper Perigordian to the current Non‐hierarchical Gravettian in the Cantabrian Region (Northern Spain): recent changes, current challenges. In: Sálezova, S., Novák, M., Mizerová (Eds.), Forgotten Times and Spaces: New Perspectives in Paleoanthropological, Paleoetnological and Archeological studies. 1st ed. Masarykova univerzita, Brno, Czech Republic, pp. 245257.Google Scholar
Brock, F., Geoghegan, V., Thomas, B., Jurkschat, K., Higham, T.F.G, 2013. Analysis of Bone "Collagen" Extraction Products for Radiocarbon Dating. Radiocarbon 55, 445463.Google Scholar
Brock, F., Wood, R., Higham, T., Ditchfield, P., Bayliss, A., Bronk Ramsey, C., 2012. Reliability of nitrogen content (% N) and carbon:nitrogen atomic ratios (C:N) as indicators of collagen preservation suitable for radiocarbon dating. Radiocarbon 54, 879886.CrossRefGoogle Scholar
Bronk Ramsey, C., 2009. Dealing with outliers and offsets in radiocarbon dating. Radiocarbon 51, 10231045.Google Scholar
Bronk Ramsey, C., 2017. OxCal, version 4.3. https://c14.arch.ox.ac.uk/oxcal.html.Google Scholar
Buylaert, J.P., Jain, M., Murray, A.S., Thomsen, K.J., Thiel, C., Sohbati, R., 2012. A robust feldspar luminescence dating method for Middle and Late Pleistocene sediments. Boreas 41, 435451.Google Scholar
Buylaert, J.P., Murray, A.S., Thomsen, K.J., Jain, M., 2009. Testing the potential of an elevated temperature IRSL signal from K-feldspar. Radiation Measurements 44, 560565.Google Scholar
Carbonell, E., Huguet, R., Cáceres, I., Lorenzo, C., Mosquera, M., Ollé, A., Rodríguez, X.P., et al., 2014. Los yacimientos arqueológicos de la Sierra de Atapuerca. In: Sala Ramos, R. (Ed.), Los cazadores recolectores del Pleistoceno y del Holoceno en Iberia y el Estrecho de Gibraltar: estado actual del conocimiento del registro arqueológico. Fundación Atapuerca, Burgos, pp. 534560.Google Scholar
Cunha, P.P., Martins, A.A., Huot, S., Murray, A., Raposo, L., 2008. Dating the Tejo river lower terraces in the Ródão area (Portugal) to assess the role of tectonics and uplift. Geomorphology 102, 4354.Google Scholar
Dalén, L., Orlando, L., Shapiro, B., Brandström-Durling, M., Quam, R., Gilbert, M., Thomas, P., et al., 2012. Partial genetic turnover in Neandertals: continuity in the east and population replacement in the west. Molecular Biology and Evolution 29, 18931897.Google Scholar
de la Peña, P., 2013. The beginning of the Upper Paleolithic in the Baetic Mountain area (Spain). Quaternary International 318, 6989.Google Scholar
Dewald, A., Heinze, S., Jolie, J., Zilges, A., Dunai, T., Rethemeyer, J., Melles, M., et al., 2013. CologneAMS, a dedicated center for accelerator mass spectrometry in Germany. Nuclear Instruments and Methods in Physics Research B 294, 1823.CrossRefGoogle Scholar
Dietze, M., Kreutzer, S., Burow, C., Fuchs, M.C., Fischer, M., Schmidt, C., 2016. The abanico plot: Visualising chronometric data with individual standard errors. Quaternary Geochronology 31, 1218.CrossRefGoogle Scholar
Díez Fernández-Lomana, J.C., Navazo Ruiz, M., 2005. Apuntes sociales y geográficos a partir de los yacimientos del Paleolítico Medio en la zona nororiental de la Meseta castellano leonesa. In: Neandertales Cantábricos. Museo y Centro de Investigación de Altamira, Monografía 20, 39–54.Google Scholar
Díez Fernández, C., Alonso, R., Bengoechea, A., Colina, A., Jordá, J.F., Navazo, M., Ortíz, J.E., Pérez, S., Torres, T., 2008. El Paleolítico medio en el valle del Arlanza (Burgos) Los sitios de La Ermita, Millán y La Mina. Cuaternario y Geomorfología 22, 135157.Google Scholar
Durand, N., Monger, H.C., Canti, M.G., 2010. Calcium carbonate features. In: Stoops, G., Marcelino, V., Mees, F. (Eds.), Interpretation of Micromorphological Features of Soils and Regoliths. Elsevier, Amsterdam, pp. 149194.Google Scholar
Durcan, J.A., King, G.E., Duller, G.A.T., 2015. DRAC: Dose Rate and Age Calculator for trapped charge dating. Quaternary Geochronology 28, 5461.Google Scholar
Fernández, S., Fuentes, N., Carrión, J.S., González-Sampériz, P., Montoya, E., Gil, G., Vega-Toscano, G., Riquelme, J.A., 2007. The Holocene and Upper Pleistocene pollen sequence of Carihuela Cave, southern Spain. Geobios 40, 7590.Google Scholar
Finlayson, C., Giles Pacheco, F., Rodríguez-Vidal, J., Fa, D., Gutierrez López, J., Santiago Pérez, A., Finlayson, G., Allue, E., Preysler, J., Cáceres, I., Carrión, J., Fernández Jalvo, Y., Gleed-Owen, C., Jimenez Espejo, F., López, P., López Sáez, J., Riquelme Cantal, J., Sánchez Marco, A., Giles Guzman, F., Brown, K., Fuentes, N., Valarino, C., Villalpando, A., Stringer, C., Martinez Ruiz, F., Sakamoto, T., 2006. Late survival of Neanderthals at the southernmost extreme of Europe. Nature 443, 850853.Google Scholar
Fletcher, W.J., Sánchez Goñi, M.F., 2008. Orbital- and sub-orbital-scale climate impacts on vegetation of the western Mediterranean basin over the last 48,000 yr. Quaternary Research 70, 451464.Google Scholar
Fu, Q., Posth, C., Hajdinjak, M., Petr, M., Mallick, S., Fernandes, D., Furtwängler, A., et al., 2016. The genetic history of Ice Age Europe. Nature 534, 200205.Google Scholar
Fülöp, R.-H., Heinze, S., John, S., Rethemeyer, J., 2013. Ultrafiltration of bone samples is neither the problem nor the solution. Radiocarbon 55, 491500.Google Scholar
Galván, B., Hernández, C.M., Mallol, C., Mercier, N., Sistiaga, A., Soler, V., 2014. New evidence of early Neanderthal disappearance in the Iberian Peninsula. Journal of Human Evolution 75, 1627.Google Scholar
Guerin, G., Mercier, N., Adamiec, G., 2011. Dose-rate conversion factors: update. Ancient TL 29, 58.Google Scholar
Gutiérrez-Zugasti, I., Rios-Garaizar, J., Marín-Arroyo, A.B., Rasines del Río, P., Maroto, J., Jones, J.R., Bailey, G.N., Richards, M.P., 2017. A chrono-cultural reassessment of the levels VI–XIV from El Cuco rock-shelter: A new sequence for the Late Middle Paleolithic in the Cantabrian region (northern Iberia). Quaternary International. http://dx.doi.org/10.1016/j.quaint.2017.06.059.CrossRefGoogle Scholar
Higham, T., Douka, K., Wood, R., Ramsey, C.B., Brock, F., Basell, L., Camps, M., et al., 2014. The timing and spatiotemporal patterning of Neanderthal disappearance. Nature 512, 306309.Google Scholar
Hoffmann, D.L., Pike, A.W.G., Wainer, K., Zilhão, J., 2013. New U-series results for the speleogenesis and the Palaeolithic archaeology of the Almonda karstic system (Torres Novas, Portugal). Quaternary International 294, 168182.CrossRefGoogle Scholar
Hublin, J.-J., 2015. The modern human colonization of western Eurasia: when and where? Quaternary Science Reviews 118, 194210.CrossRefGoogle Scholar
Hublin, J.-J., Barroso-Ruiz, C., Lara, P.M., Fontugne, M., Reyss, J., 1995. The Mousterian site of Zafarraya (Andalucía, Spain): dating and implications on the Palaeolithic peopling processes of Western Europe. Compte Rendus de l'Académie des Sciences, Paris, Série IIa – Earth and Planetary Science 321, 931937.Google Scholar
Huntley, D., Baril, M., 1997. The K content of the K-feldspars being measured in optical dating or in thermoluminescence dating. Ancient TL 15, 1113.Google Scholar
Jordá-Pardo, J.F., Navazo, M., Díez Fernández-Lomana, J.C., 2014. Jarama VI (Valdesotos, Guadalajara, Castilla-La Mancha). In: Sala Ramos, R. (Ed.), Los cazadores recolectores del Pleistoceno y del Holoceno en Iberia y el Estrecho de Gibraltar: estado actual del conocimiento del registro arqueológico. Fundación Atapuerca, Burgos, pp. 531533.Google Scholar
Jöris, O., Álvarez-Fernández, E., Weninger, B., 2003. Radiocarbon evidence of the Middle to Upper Palaeolithic transition in Southwestern Europe. Trabajos de Prehistoria 60, 1538.Google Scholar
Kehl, M., Burow, C., Cantalejo, P., Domínguez-Bella, S., Durán, J.J., Henselowsky, F., Klasen, N., et al., 2016. Site formation and chronology of the new Paleolithic site Sima de Las Palomas de Teba, southern Spain. Quaternary Research 85, 313331.CrossRefGoogle Scholar
Kehl, M., Burow, C., Hilgers, A., Navazo, M., Pastoors, A., Weniger, G.-C., Wood, R., Jordá-Pardo, J.F., 2013. Late Neanderthals at Jarama VI (Central Iberia)? Quaternary Research 80, 218234.Google Scholar
Kelly, R.L., 2013. The Lifeways of Hunter-Gatherers: The Foraging Spectrum. Cambridge University Press, New York, US.CrossRefGoogle Scholar
Maroto, J., Vaquero, M., Arrizabalaga, Á., Baena, J., Baquedano, E., Jordá, J., Julià, R., et al., 2012. Current issues in late Middle Palaeolithic chronology: new assessments from Northern Iberia. Quaternary International 247, 1525.Google Scholar
Márquez, B., Mosquera, M., Panera, J., Bárez, S., Rus, I., Gómez, J., Arsuaga, J. L., 2008. El poblamiento humano antiguo en el valle alto del Lozoya (Madrid). Espacio, Tiempo y Forma, Serie I: Nueva época, Prehistoria y Arqueología 1, 2532.Google Scholar
Menéndez, M., Weniger, G.C., Álvarez-Alonso, D., Andrés-Herrero, M. de, García, E., Jordá, J., Kehl, M., Rojo, J., Quesada, J.M., Schmidt, I., 2014. La Cueva de la Güelga. Cangas de Onís. Asturias. In: Sala Ramos, R. (Ed.), Pleistocene and Holocene Hunter-Gatherers in Iberia and the Gibraltar Strait: The Current Archaeological Record, Burgos. pp. 6063.Google Scholar
Michel, V., Delanghe-Sabatier, D., Bard, E., Barroso Ruiz, C., 2013. U-series, ESR and 14C studies of the fossil remains from the Mousterian levels of Zafarraya Cave (Spain): a revised chronology of Neanderthal presence. Quaternary Geochronology 15, 2033.Google Scholar
Moreno, A., González-Sampériz, P., Morellón, M., Valero-Garcés, B.L., Fletcher, W.J., 2012. Northern Iberian abrupt climate change dynamics during the last glacial cycle: A view from lacustrine sediments. Quaternary Science Reviews 36, 139153.Google Scholar
Moreno, A., Svensson, A., Brooks, S.J., Connor, S., Engels, S., Fletcher, W., Genty, D., et al., 2014. A compilation of Western European terrestrial records 60–8 ka BP: towards an under-standing of latitudinal climatic gradients. Quaternary Science Reviews 106, 167185.Google Scholar
Murray, A.S., Wintle, A.G., 2000. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiation Measurements 32, 5773.CrossRefGoogle Scholar
Murray, A.S., Wintle, A.G., 2003. The single aliquot regenerative dose protocol: potential for improvements in reliability. Radiation Measurements 37, 377381.Google Scholar
Prescott, J.R., Hutton, J.T., 1994. Cosmic ray contributions to dose rates for luminescence and ESR dating: Large depths and long-term time variations. Radiation Measurements 23, 497500.Google Scholar
Quam, R.M., Arsuaga, J.L., Bermudez de Castro, J.M., Díez, C.J., Lorenzo, C., Carretero, M., García, N., Ortega, A.I., 2001. Human remains from Valdegoba Cave (Huérmeces, Burgos, Spain). Journal of Human Evolution 41(5), 385435.Google Scholar
Rasmussen, S.O., Bigler, M., Blockley, S.P., Blunier, T., Buchardt, S.L., Clausen, H.B., Cvijanovic, I., et al., 2014. A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy. Quaternary Science Reviews 106, 1428.Google Scholar
Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk Ramsey, C., Buck, C.E., et al., 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55, 18691887.Google Scholar
Rethemeyer, J., Fülöp, R.H., Höfle, S., Wacker, L., Heinze, S., Hajdas, I., Patt, U., König, S., Stapper, B., Dewald, A., 2013. Status report on sample preparation facilities for 14C analysis at the new CologneAMS center. Nuclear Instruments and Methods in Physics Research B 294, 168172.Google Scholar
Roselló Izquierdo, E., Morales Muñiz, A., 2005. Ictiofaunas musterienses de la Península Ibérica: ¿Evidencias de pesca Neandertal? Munibe 57, 183195.Google Scholar
Sánchez Goñi, M.F., Harrison, S.P., 2010. Millennial-scale climate variability and vegetation changes during the Last Glacial: concepts and terminology. Quaternary Science Reviews 29, 28232827.CrossRefGoogle Scholar
Sankararaman, S., Patterson, N., Li, H., Pääbo, S., Reich, D., 2012. The date of interbreeding between Neandertals and Modern Humans. PLOS Genetics 8, e1002947. http://dx.doi.org/10.1371/journal.pgen.1002947.Google Scholar
Schmidt, I., Bradtmöller, M., Kehl, M., Pastoors, A., Tafelmaier, Y., Weninger, B., Weniger, G.-C., 2012. Rapid climate change and variability of settlement patterns in Iberia during the Late Pleistocene. Quaternary International 274, 179204.Google Scholar
Stoops, G., 2003. Guidelines for the Analysis and Description of Soil and Regolith Thin Sections. Soil Science Society of America, Madison, Wisconsin.Google Scholar
Thiel, C., Buylaert, J.-P., Murray, A., Terhorst, B., Hofer, I., Tsukamoto, S., Frechen, M., 2011. Luminescence dating of the Stratzing loess profile (Austria) e testing the potential of an elevated temperature post-IR IRSL protocol. Quaternary International 234, 2331.Google Scholar
Trinkaus, E., 2007. European early modern humans and the fate of the Neandertals. Proceedings of the National Academy of Sciences 104, 73677372.CrossRefGoogle ScholarPubMed
Van der Meer, J.J.M., Menzies, J., 2011. The micromorphology of unconsolidated sediments. Sedimentary Geology 238, 213232.CrossRefGoogle Scholar
Van Vliet-Lanoë, B., 2010. Frost Action. In: Stoops, G., Marcellino, V., Mees, F. (Eds.), Interpretation of Micromorphological Features of Soils and Regoliths. Elsevier, Amsterdam, The Netherlands, pp. 81108.Google Scholar
Vegas, J., Ruiz-Zapata, B., Ortiz, J.E., Galán, L., Torres, T., García-Cortés, Á., Gil-García, M.J., Pérez-González, A., Gallardo-Millán, J.L., 2010. Identification of arid phases during the last 50 cal. ka BP from the Fuentillejo maar-lacustrine record (Campo de Calatrava Volcanic Field, Spain). Journal of Quaternary Science 25, 10511062.Google Scholar
Wood, R., Bernaldo de Quirós, F., Maíllo-Fernández, J.-M., Tejero, J.-M., Neira, A., Higham, T, 2016. El Castillo (Cantabria, northern Iberia) and the Transitional Aurignacian: using radiocarbon dating to assess site taphonomy. Quaternary International. http://dx.doi.org/10.1016/j.quaint.2016.03.005.CrossRefGoogle Scholar
Wood, R.E., Arrizabalaga, A., Camps, M., Fallon, S., Iriarte-Chiapusso, M.J., Jones, R., Maroto, J., et al., 2014. The chronology of the earliest Upper Palaeolithic in northern Iberia: new insights from L’Arbreda, Labeko Koba and La Viña. Journal of Human Evolution 69, 91109.Google Scholar
Wood, R.E., Barroso, C., Caparrós, M., Jordá-Pardo, J.F., Galván Santos, B., Higham, T.F.G., 2013. Radiocarbon dating casts doubt on the late chronology of the Middle to Upper Palaeolithic transition in southern Iberia. Proceedings of the National Academy of Sciences of the United States of America 110, 27812786.Google Scholar
Zilhão, J., 2006. Chronostratigraphy of the Middle to- Upper Paleolithic transition in the Iberian Peninsula. Pyrenae 37, 784.Google Scholar
Zilhão, J., 2009. The Ebro frontier revisited. In: M. Camps, C. Szmidt (Eds.), The Mediterranean from 50,000 to 25,000 BP: Turning Points and New Direction. Oxbow Books, Oxford, pp. 293311.Google Scholar
Zilhão, J., Ajas, A., Badal, E., Burow, C., Kehl, M., López-Sáez, J.A., Pimenta, C., et al., 2016. Cueva Antón: a multi-proxy MIS 3 to MIS 5a paleoenvironmental record for SE Iberia. Quaternary Science Reviews 146, 251273.Google Scholar
Zilhão, J., Anesin, D., Aubry, T., Badal, E., Cabanes, D., Kehl, M., Klasen, N., et al., 2017. Precise dating of the Middle-to-Upper Paleolithic transition in Murcia (Spain) supports late Neandertal persistence in Iberia. Heliyon 3, e00435. http://dx.doi.org/10.1016/j.heliyon.2017.e00435.Google Scholar
Supplementary material: File

Kehl et al. supplementary material

Table S1

Download Kehl et al. supplementary material(File)
File 57.7 KB
Supplementary material: File

Kehl et al. supplementary material

Table S2

Download Kehl et al. supplementary material(File)
File 20 KB
Supplementary material: File

Kehl et al. supplementary material

Table S3

Download Kehl et al. supplementary material(File)
File 18.4 KB