Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-25T19:50:48.516Z Has data issue: false hasContentIssue false

Relationships between glacier and rock glacier in the Maritime Alps, Schiantala Valley, Italy

Published online by Cambridge University Press:  20 January 2017

Adriano Ribolini*
Affiliation:
Dipartimento di Scienze della Terra, Università di Pisa, Pisa, via S. Maria 53, 56126 Pisa, Italy
Alessandro Chelli
Affiliation:
Dipartimento di Scienze della Terra, Università di Parma, Viale G.P. Usberti 157 A, 43100, Parma, Italy
Mauro Guglielmin
Affiliation:
Dipartimento di Biologia Strutturale e Funzionale, Università dell’Insubria, via H. J. Dunant, 3, 21100 Varese, Italy
Marta Pappalardo
Affiliation:
Dipartimento di Scienze della Terra, Università di Pisa, Pisa, via S. Maria 53, 56126 Pisa, Italy
*
*Corresponding author.E-mail addresses:ribolini@dst.unipi.it (R. Ribolini), alessandro.chelli@unipr.it (A. Chelli), mauro.guglielmin@uninsubria.it (M. Guglielmin).

Abstract

In the Schiantala Valley of the Maritime Alps, the relationship between a till-like body and a contiguous rock glacier has been analyzed using geomorphologic, geoelectric and ice-petrographic methodologies. DC resistivity tomographies undertaken in the till and in the rock glacier show the presence of buried massive ice and ice-rich sediments, respectively. Ice samples from a massive ice outcrop show spherical gas inclusions and equidimensional ice crystals that are randomly orientated, confirming the typical petrographic characteristics of sedimentary ice. The rock glacier formation began after a phase of glacier expansion about 2550"50 14C yr BP. Further ice advance during the Little Ice Age (LIA) overrode the rock glacier root and caused partial shrinkage of the pre-existing permafrost. Finally, during the 19th and 20th centuries, the glacial surface became totally debris covered. Geomorphological and geophysical methods combined with analyses of ice structure and fabric can effectively interpret the genesis of landforms in an environment where glaciers and permafrost interact. Ice petrography proved especially useful for differentiating ice of past glaciers versus ice formed under permafrost conditions. These two mechanisms of ice formation are common in the Maritime Alps where many sites of modern rock glaciers were formerly occupied by LIA glaciers.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ackert, R.P. Jr.(1998). A rock glacier/debris-covered glacier system at Galena Creek, Absaroka Mountains, Wyoming.. Geografiska Annaler A 80, 3–4 267276.Google Scholar
Baroni, C., Orombelli, G.(1996). The Alpine Iceman and Holocene climatic-change.. Quaternary Research 46, 7883.CrossRefGoogle Scholar
Barsch, D. (1992). Permafrost creep and rock glacier.. Permafrost and Periglacial Processes 11, 290293.Google Scholar
Berger, J., Krainer, K., Mostler, W.(2004). Dynamics of an active rock glacier (Ötzal Alps, Austria).. Quaternary Research 62, 233242.Google Scholar
Bianchi, A., Ciuffi, P., D’Onofrio, L., Federici, P.R., Marchisio, M., Pappalardo, M., Ribolini, A., Sartini, S.(2004). Application of electrical resistivity tomography to investigation of buried ice and permafrost: two case studies from the Maritime Alps (Italy).. Proceeding of European Geosciences Union. 1st General Assembly Geophysical Research Abstract vol. 6, Nice, France.Google Scholar
Camoletto, C.F. (1931). Le variazioni periodiche dei ghiacciai delle Alpi Marittime.. Bollettino del Comitato Glaciologico Italiano ser.1, 11, 189212.Google Scholar
Clark, D.H., Clark, M.M., Gillespie, A.R.(1994). Debris-covered glaciers in the Sierra Nevada, California, and their implication for snowline reconstruction.. Quaternary Research 41, 139153.CrossRefGoogle Scholar
(1959–1961). Consiglio Nazionale delle Ricerche-Comitato Glaciologico Italiano.. Ghiacciai del Piemonte. Catasto dei Ghiacciai Italiani, vol. II, :Torino, 324pp.Google Scholar
Duval, P. (1981). Creep and fabric of polycrystalline ice under shear and compression.. Journal of Glaciology 27, 129140.CrossRefGoogle Scholar
Evin, M. (1993). Glacier et Glacier Rocheux dans les vallons de Mongioie et de Schiantala. Une nouvelle interprétation.. Zeitschrift für Gletscherkunde und Glazialgeologie 27/28, 110.Google Scholar
Evin, M., Fabre, D.(1990). The distribution of permafrost in rock glaciers of Southern Alps (France).. Geomorphology 3, 5771.CrossRefGoogle Scholar
Federici, P.R., Pappalardo, M.(1995). L’evoluzione recente dei ghiacciai delle Alpi Marittime.. Geografia Fisica e Dinamica Quaternaria 18, 257269.Google Scholar
Federici, P.R., Stefanini, M.C.(2001). Evidences and chronology of the Little Ice Age in the Argentera Massif (Italian Maritime Alps).. Zeitschrift für Gletscherkunde und Glazialgeologie 37, 3548.Google Scholar
P.R., Federici, Pappalardo, M., Ribolini, A.. (2003). Geomorphological map of Maritime Alps Natural Park and surroundings..Color map, 1:25,000, S.EL.CA, Firenze.Google Scholar
Finsinger, W., Ribolini, A.(2001). Late glacial to Holocene deglaciation of the Colle del Vei del Bouc-Colle del Sabbione Area (Argentera Massif, Maritime Alps, Italy-France).. Geografia Fisica e Dinamica Quaternaria 24, 141156.Google Scholar
Furbish, D.J., Andrews, J.T.(1984). The use of hypsometry to indicate long-term stability and response of valley glaciers to changes in mass transfer.. Journal of Glaciology 30, 199211.Google Scholar
Guglielmin, M., Nardo, A., Smiraglia, C.(1995). Lo spessore dei ghiacciai della Valfurva. Misurazioni tramite Sondaggi Elettrici Verticali.. Neve e Valanghe 24, 5867.Google Scholar
Guglielmin, M., Cannone, N., Dramis, F.(2001). Permafrost–glacial evolution during the Holocene in the Italian Central Alps.. Permafrost and Periglacial Processes 12, 111124.Google Scholar
Guglielmin, M., Camusso, M., Polesello, S., Valsecchi, S.(2004). An old relict glacier body preserved in permafrost environment: the Foscagno rock glacier (upper Valtellina, Italian Central Alps).. Arctic, Antarctic, and Alpine Research 36, 108116.CrossRefGoogle Scholar
Haeberli, W. (1985). Creep of mountain permafrost: internal structure and flow of alpine rock glaciers.. Mitteilungen der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie 77, 1142.(Zürich).Google Scholar
Haeberli, W. (1990). Glacier and permafrost signals of 20th-century warming.. Annals of Glaciology 99101.CrossRefGoogle Scholar
Haeberli, W., Vonder Mühll, D.("hll, 1996). On the characteristics and possible origins of ice in rock glacier permafrost.. Zeitschrift für Geomorphologie NF Supplementband 104, 4357.Google Scholar
Haeberli, W., Kääb, A., Wagner, S., Vonder Mühll, D., Geissler, P., Haas, J.N., Glatzel-Mattheier, H., Wagenbach, D.(1999). Pollen analysis and 14C age of moss remains in a permafrost core recovered from the active rock glacier Murtèl-Corvatsch, Swiss Alps: geomorphological and glaciological implications.. Journal of Glaciology 45, 18.Google Scholar
Hauck, C., Vonder Mühll, D., Maurer, H.(2003). Using DC resistivity tomography to detect and characterize mountain permafrost.. Geophysical Prospecting 51, 273284.CrossRefGoogle Scholar
Humlum, O. (1996). Origin of rock glaciers: observations from Mellemfjord, Disko Island, central West Greenland.. Permafrost and Periglacial Processes 7, 361380.3.0.CO;2-4>CrossRefGoogle Scholar
Kääb, A., Kneisel, C.("äb and Kneisel, 2006). Permafrost creep within a recently deglaciated glacier Forefield: Muragl, Swiss Alps.. Permafrost and Periglacial Processes 17, 7985.Google Scholar
Kääb, A., Vollmer, M.("äb and Vollmer, 2000). Surface geometry, thickness changes and flow fields on creeping mountain permafrost: automatic extraction by digital image analysis.. Permafrost and Periglacial Processes 11, 315326.3.0.CO;2-J>CrossRefGoogle Scholar
King, L., Fisch, W., Haeberli, W., Wächter, H.P.(1987). Comparison on resistivity and radio-echo soundings on rock glacier permafrost.. Zeitschrift für Gletscherkunde und Glazialgeologie 23, 7797.Google Scholar
Kneisel, C. (2004). New insights into mountain permafrost occurrence and characteristics in glacier forefields at high altitude through the application of 2D resistivity imaging.. Permafrost and Periglacial Processes 15, 221227.Google Scholar
Krainer, K., Mostler, W.(2000). Reichenkar rock glacier: a glacier derived debris-ice-system in the Western Stubai Alps, Austria.. Permafrost and Periglacial Processes 11, 267275.Google Scholar
Krainer, K., Mostler, W., Span, N.(2002). A glacier-derived, ice-cored rock glacier in the Western Stubai Alps (Austria): evidence from ice exposures and ground penetrating radar investigation.. Zeitschrift für Gletscherkunde und Glazialgeologie 38, 2134.Google Scholar
IAHS UNEP UNESCO(1989). World Glacier Inventory, Teufen, Switzerland..Google Scholar
Langway, C.C. Jr.(1958). Ice fabrics and the universal stage. U.S. Army Snow Ice and Permafrost Research Establishment, Wilmette, Illinois.. Technical Report 62, 15 pp.Google Scholar
Lugon, R., Delaloye, R., Serrano, E., Reynard, E., Lambiel, C., Gonzalez-Trueba, J.J.(2004). Permafrost and Little Ice Age glacier relationships, Posets Massif, Central Pyrenees, Spain.. Permafrost and Periglacial Processes 15, 207220.CrossRefGoogle Scholar
Meier, M.F., Post, A.S.(1962). Recent variations in mass net budgets of glaciers in western North America.. International Association of Hydrological Sciences Publication 58, 6377.Google Scholar
Matthews, J.A., Berrisford, M.S., Dressera, P.Q., Nesjeb, A.S., Dahl, O., Bjunec, A.E., Bakke, J., John, H., Birksc, B., Liec, Ø., Dumayne-Peatyg, L., Barnett, C.(2005). Holocene glacier history of Bjørnbreen and climatic reconstruction in central Jotunheimen, Norway, based on proximal glaciofluvial stream-bank mires.. Quaternary Science Reviews 24, 6790.CrossRefGoogle Scholar
Orombelli, G., Pelfini, M.(1985). Una fase di avanzata glaciale nell’Olocene superiore, precedente alla Piccola Glaciazione, nelle Alpi Centrali.. Rendiconti Società Geologica Italiana 8, 1720.Google Scholar
Orombelli, G., Porter, S.C.(1982). Late Holocene fluctuations of Brenva Glacier.. Geografia Fisica e Dinamica Quaternaria 5, 1437.Google Scholar
Pappalardo, M. (1999). Remarks upon the present-day condition of the glaciers in the Italian Maritime Alps.. Geografia Fisica e Dinamica Quaternaria 22, 7982.Google Scholar
Patterson, W.S.B. (1994). The physics of glaciers.. Pergamon.. 3rd EditionOxford: 480 pp.Google Scholar
Potter, N. (1972). Ice-cored rock glacier, Galena Creek, northern Absaroka Mountains, Wyoming.. Geological Society of America Bulletin 83, 30253057.Google Scholar
Potter, N., Steig, E.J., Clark, D.H., Speece, M.A., Clark, G.M., Updike, A.B.(1998). Galena Creek rock glacier revisited–New observations on an old controversy.. Geografiska Annaler 80A, 3–4 251265.CrossRefGoogle Scholar
Puccioni, E.. (2005). La deglaciazione delle Alpi Marittime sulla base del calcolo delle linee di equilibrio dei ghiacciai stadiali..Unpublished Degree Thesis University of Pisa, 128pp.Google Scholar
Reynard, E., Lambiel, C., Delaloye, R., Devaud, G., Baron, L., Chapellier, D., Marescot, L., Monnet, R.(2003). Glacier/permafrost relationships in forefields of small glaciers (Swiss Alps).. Proceedings 8th International Conference on Permafrost, Zurich, Switzerland, Balkema 2, 947952.Google Scholar
Ribolini, A. (1999). Areal distribution of rock glaciers in the Argentera Massif (Maritime Alps) as a tool for recent glacial evolution reconstruction.. Geografia Fisica e Dinamica Quaternaria 22, 8386.Google Scholar
Ribolini, A. (2001). Active and fossil rock glaciers in the Argentera Massif (Maritime Alps): surface ground temperatures and paleoclimatic significance.. Zeitschrift für Gletscherkunde und Glazialgeologie 37, 125140.Google Scholar
Ribolini, A., Fabre, D.(2006). Permafrost existence in the rock glaciers of the Argentera Massif (Maritime Alps, Italy.. Permafrost and Periglacial Processes 17, 4963.Google Scholar
Schweitzer, G. (1968). Die Verbreitung der Blockgletscher in den französisch-italienischen Seealpen. Aktualgeomorphologische Studien im oberen Tinéetal.. Zeitschrift für Geomorphologie, Supplement Band 6, 1167.Google Scholar
Shroder, J.F., Bishop, M.P., Copland, L., Sloan, V.F.(2000). Debris-covered glaciers and rock glaciers in the Nanga Parbat Himalaya, Pakistan.. Geografiska Annaler 82A, 1 1731.CrossRefGoogle Scholar
Smiraglia, C., Guglielmin, M.(1997). Rock Glaciers Inventory of Italian Alps.. Archivio Comitato Glaciologico Italiano vol. 3, (103 pp).Google Scholar
Telford, W.M., Geldart, L.P., Sheriff, R.E.(1990). Applied geophysics.. Cambridge University Press, New York.(770 pp).CrossRefGoogle Scholar
Teruzzi, M.. (2000). Analisi chimiche e fisiche di ground ice nell’ambiente periglaciale polare e alpino..Esempi da Amorphous glacier (Antartide), Foscagno (Sondrio) e Pietraporzio (Cuneo). Unpublished Thesis,University of Milan, 174 pp.Google Scholar
Thorsteinsson, T., Kipfstuhl, J., Eicken, H., Johnsen, S., Fuhrer, K.(1995). Crystal size variations in Eemian-age ice from the GRIP ice core, Central Greenland.. Earth and Planetary Science Letters 131, 381394.Google Scholar
Whalley, W.B., Azizi, F.(1994). Models of flow of rock glaciers: Analysis, critique and a possible test.. Permafrost and Periglacial Processes 5, 3751.Google Scholar
Whalley, W.B., Martin, H.E.(1992). Rock glaciers: II models and mechanisms.. Progress in Physical Geography 16, 127186.Google Scholar