Hostname: page-component-857557d7f7-cmjwd Total loading time: 0 Render date: 2025-11-22T06:26:48.307Z Has data issue: false hasContentIssue false

The Quaternary landscapes, chronostratigraphy, and paleoenvironments of the Chalbi Desert, Kenya

Published online by Cambridge University Press:  12 November 2025

Gary E. Stinchcomb*
Affiliation:
Department of Earth Sciences, The University of Memphis, Memphis, TN, USA
William E. Lukens
Affiliation:
Department of Geology & Environmental Science, James Madison University, Harrisonburg, VA, USA
Gregory Henkes
Affiliation:
Department of Geosciences, Stony Brook University, Stony Brook, NY, USA
Mathieu Duval
Affiliation:
National Research Centre on Human Evolution (CENIEH), Burgos, Spain Australian Research Centre for Human Evolution (ARCHE), Griffith University, Nathan, QLD, Australia Palaeoscience Labs, Department of Archaeology and History, La Trobe University, Bundoora, VIC, Australia
Rainer Grün
Affiliation:
Research School of Earth Sciences, The Australian National University, Canberra ACT, Australia School of Geography, Nanjing Normal University, Nanjing, China
Shaun Adams
Affiliation:
Australian Research Centre for Human Evolution (ARCHE), Griffith University, Nathan, QLD, Australia
Jian-xin Zhao
Affiliation:
Radiogenic Isotope Facility, School of Earth and Environmental Sciences, The University of Queensland, Brisbane, QLD, Australia
Jean-Philip Brugal
Affiliation:
UMR 7269 LAMPEA, Aix Marseille Université, CNRS, Ministère de la culture, Aix-en-Provence, France
Steven L. Forman
Affiliation:
Institute of Archaeology, Baylor University, Waco, TX, USA Department of Geosciences, Baylor University, Waco, TX, USA
Katie M. Binetti
Affiliation:
Institute of Archaeology, Baylor University, Waco, TX, USA Department of Anthropology, Baylor University, Waco, TX, USA
Joseph V. Ferraro
Affiliation:
Institute of Archaeology, Baylor University, Waco, TX, USA Department of Anthropology, Baylor University, Waco, TX, USA
*
Corresponding author: Gary E. Stinchcomb; Email: gstnchcm@memphis.edu

Abstract

The Chalbi Desert, located in eastern Africa, is a significant but overlooked archive of the Pleistocene and Holocene periods that could add insight into investigations on human evolution. We revisited southeastern Chalbi Desert landforms between the towns of Kargi and Maikona to improve the chronostratigraphy and provide paleoenvironmental context. Direct U-series and electron spin resonance dating of various fossil teeth recovered from a deflated dune (Qzs) landform at the Farre locality return a mean age of ∼545 ka, which is compatible with biostratigraphic inferences. While this numerical age result should probably be regarded as mostly indicative given the existing uncertainty on the environmental dose rate evaluation, the data set available nevertheless strongly suggests a Middle Pleistocene age for at least some of the fauna. Sedimentology, luminescence, and 14C dating further suggest that this Qzs landform and its contents were modified by alluvial fan development and weathering during denudation in a proximal fan setting through the late Pleistocene into the Holocene. The Qzs landform currently experiences aeolian additions, erosion, and salt-affected soil development in an arid climate. Pedogenic carbonate isotope geochemistry suggests that deflated sand dunes were covered by woody grasslands during Marine Isotope Stage (MIS) 4 and 3 pluvials, consistent with nearby fan progradation constrained at >35 ka. The desert experienced increased hydrologic activity during late Pleistocene and African humid period pluvials, as evidenced by additional optically stimulated luminescence and 14C dating from fan, dune, and playa contexts. The last significant pluvial episode ended after 4.4 ± 0.3 cal ka BP, which coincides with the final regression of nearby Lake Turkana. This study extends the chronology of Quaternary sediments in the Chalbi Desert to the Middle Pleistocene and offers paleoenvironmental insights into the conditions experienced by Middle Stone Age tool users in the region.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Quaternary Research Center.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Abell, P.I., Nyamweru, C.K., 1988. Paleoenvironments in the Chalbi Basin of Kenya. Chemical Geology: Isotope Geoscience 72, 283291.Google Scholar
Ashley, G.M., 2020. Paleo-Critical Zones, windows into the changing life and landscapes during the Quaternary Period. Quaternary Research 96, 5365.10.1017/qua.2020.49CrossRefGoogle Scholar
Ashley, G.M., De Wet, C.B., Houser, L.M., Delaney, J.S., 2020. Widespread freshwater carbonate in the Olduvai Basin, a precursor to a major eruption in the East African Rift System. Depositional Record 6, 331351.10.1002/dep2.105CrossRefGoogle Scholar
Behrensmeyer, A.K., Potts, R., Deino, A., 2018. The Oltulelei Formation of the southern Kenyan Rift Valley: a chronicle of rapid landscape transformation over the last 500 ky. GSA Bulletin 130, 14741492.10.1130/B31853.1CrossRefGoogle Scholar
Bergström, A., Stringer, C., Hajdinjak, M., Scerri, E.M., Skoglund, P., 2021. Origins of modern human ancestry. Nature 590, 229237.10.1038/s41586-021-03244-5CrossRefGoogle ScholarPubMed
Bernasconi, S.M., Daëron, M., Bergmann, K.D., Bonifacie, M., Meckler, A.N., Affek, H.P., Anderson, N., Bajnai, D., Barkan, E., Beverly, E., 2021. InterCarb: a community effort to improve interlaboratory standardization of the carbonate clumped isotope thermometer using carbonate standards. Geochemistry, Geophysics, Geosystems 22, e2020GC009588.10.1029/2020GC009588CrossRefGoogle ScholarPubMed
Beverly, E.J., Ashley, G.M., Driese, S.G., 2014. Reconstruction of a Pleistocene paleocatena using micromorphology and geochemistry of lake margin paleo-Vertisols, Olduvai Gorge, Tanzania. Quaternary International 322, 7894.10.1016/j.quaint.2013.10.005CrossRefGoogle Scholar
Beverly, E.J., Driese, S.G., Peppe, D.J., Johnson, C.R., Michel, L.A., Faith, J.T., Tryon, C.A., Sharp, W.D., 2015. Recurrent spring-fed rivers in a Middle to Late Pleistocene semi-arid grassland: implications for environments of early humans in the Lake Victoria Basin, Kenya. Sedimentology 62, 16111635.10.1111/sed.12199CrossRefGoogle Scholar
Beverly, E.J., Levin, N.E., Passey, B.H., Aron, P.G., Yarian, D.A., Page, M., Pelletier, E.M., 2021. Triple oxygen and clumped isotopes in modern soil carbonate along an aridity gradient in the Serengeti, Tanzania. Earth and Planetary Science Letters 567, 116952.10.1016/j.epsl.2021.116952CrossRefGoogle Scholar
Beverly, E.J., Lukens, W.E., Stinchcomb, G.E., 2018. Paleopedology as a tool for reconstructing paleoenvironments and paleoecology. In: Croft, D.A., Su, D.F., Simpson, S.W. (Eds.), Methods in Paleoecology: Reconstructing Cenozoic Terrestrial Environments and Ecological Communities. Springer International Publishing, Cham, Switzerland, pp. 151183.10.1007/978-3-319-94265-0_9CrossRefGoogle Scholar
Beverly, E.J., Peppe, D.J., Driese, S.G., Blegen, N., Faith, J.T., Tryon, C.A., Stinchcomb, G.E., 2017. Reconstruction of Late Pleistocene paleoenvironments using bulk geochemistry of paleosols from the Lake Victoria region. Frontiers of Earth Science 5, 93.10.3389/feart.2017.00093CrossRefGoogle Scholar
Blegen, N., Brown, F.H., Jicha, B.R., Binetti, K.M., Faith, J.T., Ferraro, J.V., Gathogo, P.N., Richardson, J.L., Tryon, C.A., 2016. The Menengai Tuff: a 36 ka widespread tephra and its chronological relevance to Late Pleistocene human evolution in East Africa. Quaternary Science Reviews 152, 152168.10.1016/j.quascirev.2016.09.020CrossRefGoogle Scholar
Bloszies, C., Forman, S.L., Wright, D.K., 2015. Water level history for Lake Turkana, Kenya in the past 15,000 years and a variable transition from the African Humid Period to Holocene aridity. Global and Planetary Change 132, 6476.10.1016/j.gloplacha.2015.06.006CrossRefGoogle Scholar
Bobe, R., 2006. The evolution of arid ecosystems in eastern Africa. Journal of Arid Environments 66, 564584.10.1016/j.jaridenv.2006.01.010CrossRefGoogle Scholar
Brand, W.A., Assonov, S.S., Coplen, T.B., 2010. Correction for the 17O interference in δ (13C) measurements when analyzing CO2 with stable isotope mass spectrometry (IUPAC Technical Report). Pure and Applied Chemistry 82, 17191733.10.1351/PAC-REP-09-01-05CrossRefGoogle Scholar
Brooks, A.S., Yellen, J.E., Potts, R., Behrensmeyer, A.K., Deino, A.L., Leslie, D.E., Ambrose, S.H., et al., 2018. Long-distance stone transport and pigment use in the earliest Middle Stone Age. Science 360, 9094.10.1126/science.aao2646CrossRefGoogle ScholarPubMed
Brown, F.H., Fuller, C.R., 2008. Stratigraphy and tephra of the Kibish Formation, southwestern Ethiopia. Journal of Human Evolution 55, 366403.10.1016/j.jhevol.2008.05.009CrossRefGoogle ScholarPubMed
Brown, N.D., Forman, S.L., 2012. Evaluating a SAR TT-OSL protocol for dating fine-grained quartz within Late Pleistocene loess deposits in the Missouri and Mississippi river valleys, United States. Quaternary Geochronology 12, 8797.10.1016/j.quageo.2012.06.008CrossRefGoogle Scholar
Bruhn, R.L., Brown, F.H., Gathogo, P.N., Haileab, B., 2011. Pliocene volcano-tectonics and paleogeography of the Turkana Basin, Kenya and Ethiopia. Journal of African Earth Sciences 59, 295312.10.1016/j.jafrearsci.2010.12.002CrossRefGoogle Scholar
Butzer, K.W., Brown, F.W., Thruber, D.L., 1969. Horizontal sediments of the lower Omo valley; the Kibish formation. Quaternaria 11, 1529.Google Scholar
Cerling, T.E., 1984. The stable isotopic composition of modern soil carbonate and its relationship to climate. Earth and Planetary Science Letters 71, 229240.10.1016/0012-821X(84)90089-XCrossRefGoogle Scholar
Cerling, T.E., 1991. Carbon dioxide in the atmosphere; evidence from Cenozoic and Mesozoic Paleosols. American Journal of Science 291, 377400.10.2475/ajs.291.4.377CrossRefGoogle Scholar
Cerling, T.E., Wynn, J.G., Andanje, S.A., Bird, M.I., Korir, D.K., Levin, N.E., Mace, W., Macharia, A.N., Quade, J., Remien, C.H., 2011. Woody cover and hominin environments in the past 6 million years. Nature 476, 51.10.1038/nature10306CrossRefGoogle ScholarPubMed
Clark, T.R., Zhao, J., Roff, G., Feng, Y., Done, T.J., Nothdurft, L.D., Pandolfi, J.M., 2014. Discerning the timing and cause of historical mortality events in modern Porites from the Great Barrier Reef. Geochimica et Cosmochimica Acta 138, 5780.10.1016/j.gca.2014.04.022CrossRefGoogle Scholar
Da, J., Zhang, Yi Ge, Li, G., Ji, J., 2020. Aridity-driven decoupling of δ13C between pedogenic carbonate and soil organic matter. Geology 48, 981985.10.1130/G47241.1CrossRefGoogle Scholar
deMenocal, P.B., 1995. Plio-Pleistocene African climate. Science 270, 5359.10.1126/science.270.5233.53CrossRefGoogle ScholarPubMed
de Souza, G., Jaetzold, R., 1988. Marsabit District, Kenya, median annual rainfall. In: Range Management Handbook of Kenya. Vol. II, 1 [Map/Chart]. Ministry of Livestock Development, Government of Kenya, in cooperation with the Ministry of Agriculture, Federal Republic of Germany (GTZ), Nairobi.Google Scholar
Driese, S.G., Ashley, G.M., 2016. Paleoenvironmental reconstruction of a paleosol catena, the Zinj archeological level, Olduvai Gorge, Tanzania. Quaternary Research 85, 133146.10.1016/j.yqres.2015.10.007CrossRefGoogle Scholar
Du, A., Robinson, J.R., Rowan, J., Lazagabaster, I.A., Behrensmeyer, A.K., 2019. Stable carbon isotopes from paleosol carbonate and herbivore enamel document differing paleovegetation signals in the eastern African Plio-Pleistocene. Review of Palaeobotany and Palynology 261, 4152.10.1016/j.revpalbo.2018.11.003CrossRefGoogle Scholar
Durand, N., Monger, H.C., Canti, M.G., 2010. Calcium carbonate features. In: Stoops, G., Marcelino, V., Mees, F. (Eds.), Interpretation of Micromorphological Features of Soils and Regoliths. Elsevier, Amsterdam, pp. 149194.10.1016/B978-0-444-53156-8.00009-XCrossRefGoogle Scholar
Duval, M., Arnold, L.J., Bahain, J.-J., Parés, J.M., Demuro, M., Falguères, C., Shao, Q., Voinchet, P., Arnaud, J., Berto, C., 2024. Dating the earliest evidence of human presence in western Europe: new results from Pirro Nord (Italy). Quaternary Geochronology 82, 101519.10.1016/j.quageo.2024.101519CrossRefGoogle Scholar
Duval, M., Falguères, C., Bahain, J.-J., 2012. Age of the oldest hominin settlements in Spain: contribution of the combined U-series/ESR dating method applied to fossil teeth. Quaternary Geochronology 10, 412417.10.1016/j.quageo.2012.02.025CrossRefGoogle Scholar
Duval, M., Fang, F., Suraprasit, K., Jaeger, J.-J., Benammi, M., Yaowalak, C., Iglesias Cibanal, J., Grün, R., 2019. Direct ESR dating of the Pleistocene vertebrate assemblage from Khok Sung locality, Nakhon Ratchasima Province, northeast Thailand. Palaeontologia Electronica. https://doi.org/10.26879/941.CrossRefGoogle Scholar
Ebinger, C.J., Yemane, T., Harding, D.J., Tesfaye, S., Kelley, S., Rex, D.C., 2000. Rift deflection, migration, and propagation: linkage of the Ethiopian and Eastern rifts, Africa. GSA Bulletin 112, 163176.10.1130/0016-7606(2000)112<163:RDMAPL>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Eggins, S., Grün, R., Pike, A.W., Shelley, M., Taylor, L., 2003. 238U, 232Th profiling and U-series isotope analysis of fossil teeth by laser ablation-ICPMS. Quaternary Science Reviews 22, 13731382.10.1016/S0277-3791(03)00064-7CrossRefGoogle Scholar
Eggins, S.M., Grün, R., McCulloch, M.T., Pike, A.W., Chappell, J., Kinsley, L., Mortimer, G., Shelley, M., Murray-Wallace, C.V., Spötl, C., 2005. In situ U-series dating by laser-ablation multi-collector ICPMS: new prospects for Quaternary geochronology. Quaternary Science Reviews 24, 25232538.10.1016/j.quascirev.2005.07.006CrossRefGoogle Scholar
Faith, J.T., Du, A., Behrensmeyer, A.K., Davies, B., Patterson, D.B., Rowan, J., Wood, B., 2021. Rethinking the ecological drivers of hominin evolution. Trends in Ecology & Evolution 36, 797807.10.1016/j.tree.2021.04.011CrossRefGoogle ScholarPubMed
Faith, J.T., Rowan, J., Du, A., 2024. Late Cenozoic faunal and ecological change in Africa. Annual Review of Earth and Planetary Sciences 52, 37940710.1146/annurev-earth-031621-114105CrossRefGoogle Scholar
Faith, J.T., Rowan, J., O’Brien, K., Blegen, N., Peppe, D.J., 2020. Late Pleistocene mammals from Kibogo, Kenya: systematic paleontology, paleoenvironments, and non-analog associations. Journal of Vertebrate Paleontology 40, e1841781.10.1080/02724634.2020.1841781CrossRefGoogle Scholar
Faith, J.T., Tryon, C.A., Peppe, D.J., Beverly, E.J., Blegen, N., 2014. Biogeographic and Evolutionary Implications of an Extinct Late Pleistocene Impala from the Lake Victoria Basin, Kenya. Journal of Mammalian Evolution 21, 213222.10.1007/s10914-013-9238-1CrossRefGoogle Scholar
Faith, J.T., Tryon, C.A., Peppe, D.J., Beverly, E.J., Blegen, N., Blumenthal, S., Chritz, K.L., Driese, S.G., Patterson, D., 2015. Paleoenvironmental context of the Middle Stone Age record from Karungu, Lake Victoria Basin, Kenya, and its implications for human and faunal dispersals in East Africa. Journal of Human Evolution 83, 2845.10.1016/j.jhevol.2015.03.004CrossRefGoogle Scholar
Falguères, C., Bahain, J.-J., Yokoyama, Y., Arsuaga, J.L., Bemudez de Castro, J.M., Carbonell, E., Bischoff, J.L., Dolo, J.-M., 1999. Earliest humans in Europe: the age of TD6 Gran Dolina, Atapuerca, Spain. Journal of Human Evolution 37, 343352.10.1006/jhev.1999.0326CrossRefGoogle ScholarPubMed
Ferraro, J.V., Binetti, K.M., Stinchcomb, G.E., Manthi, F.K., 2013. Farre: an early Middle Pleistocene archaeological locality in the Chalbi basin, northern Kenya. Antiquity 87. https://antiquity.ac.uk/projgall/ferraro338.Google Scholar
Ferraro, J.V.F., Hoggarth, J.A., Zori, D., Binetti, K.M., Stinchcomb, G.E., 2018. Opinion: integrating human activities, archaeology, and the paleo-Critical Zone paradigm. Frontiers of Earth Science 6, 84.10.3389/feart.2018.00084CrossRefGoogle Scholar
Foelix, R., Rechenberg, I., Erb, B., Albín, A., Aisenberg, A., 2017. Sand transport and burrow construction in sparassid and lycosid spiders. Journal of Arachnology 45, 255264.10.1636/JoA-S-16-058.1CrossRefGoogle Scholar
Foerster, V., Asrat, A., Bronk Ramsey, C., Brown, E.T., Chapot, M.S., Deino, A., Duesing, W., Grove, M., Hahn, A., Junginger, A., 2022. Pleistocene climate variability in eastern Africa influenced hominin evolution. Nature Geoscience 15, 805811.10.1038/s41561-022-01032-yCrossRefGoogle ScholarPubMed
Foerster, V., Junginger, A., Langkamp, O., Gebru, T., Asrat, A., Umer, M., Lamb, H.F., et al., 2012. Climatic change recorded in the sediments of the Chew Bahir basin, southern Ethiopia, during the last 45,000 years. Quaternary International 274, 2537.10.1016/j.quaint.2012.06.028CrossRefGoogle Scholar
Foerster, V., Vogelsang, R., Junginger, A., Asrat, A., Lamb, H.F., Schaebitz, F., Trauth, M.H., 2015. Environmental change and human occupation of southern Ethiopia and northern Kenya during the last 20,000 years. Quaternary Science Reviews 129, 333340.10.1016/j.quascirev.2015.10.026CrossRefGoogle Scholar
Forman, S.L., Wright, D.K., Bloszies, C., 2014. Variations in water level for Lake Turkana in the past 8500 years near Mt. Porr, Kenya and the transition from the African Humid Period to Holocene aridity. Quaternary Science Reviews 97, 84101.10.1016/j.quascirev.2014.05.005CrossRefGoogle Scholar
Galbraith, R.F., Roberts, R.G., 2012. Statistical aspects of equivalent dose and error calculation and display in OSL dating: an overview and some recommendations. Quaternary Geochronology 11, 127.10.1016/j.quageo.2012.04.020CrossRefGoogle Scholar
Gao, Y., Henkes, G.A., Cochran, J.K., Landman, N.H., 2021. Temperatures of Late Cretaceous (Campanian) methane-derived authigenic carbonates from the Western Interior Seaway, South Dakota, USA, using clumped isotopes. GSA Bulletin 133, 25242534.10.1130/B35846.1CrossRefGoogle Scholar
Garcin, Y., Junginger, A., Melnick, D., Olago, D.O., Strecker, M.R., Trauth, M.H., 2009. Late Pleistocene–Holocene rise and collapse of Lake Suguta, northern Kenya Rift. Quaternary Science Reviews 28, 911925.10.1016/j.quascirev.2008.12.006CrossRefGoogle Scholar
Garrett, N.D., Fox, D.L., McNulty, K.P., Faith, J.T., Peppe, D.J., Van Plantinga, A., Tryon, C.A., 2015. Stable isotope paleoecology of late Pleistocene middle stone age humans from the Lake Victoria Basin, Kenya. Journal of Human Evolution 82, 114.10.1016/j.jhevol.2014.10.005CrossRefGoogle Scholar
Geiger, R., Aron, R.H., Todhunter, P., 2009. The Climate Near the Ground. Rowman & Littlefield, Lanham, MD.Google Scholar
Gile, L.H., Peterson, F.F., Grossman, R.B., 1966. Morphological and genetic sequences of carbonate accumulation in desert soils. Soil Science 101, 347360.10.1097/00010694-196605000-00001CrossRefGoogle Scholar
Groucutt, H.S., Petraglia, M.D., Bailey, G., Scerri, E.M., Parton, A., Clark‐Balzan, L., Jennings, R.P., Lewis, L., Blinkhorn, J., Drake, N.A., 2015. Rethinking the dispersal of Homo sapiens out of Africa. Evolutionary Anthropology 24, 149164.10.1002/evan.21455CrossRefGoogle ScholarPubMed
Grün, R., Eggins, S., Aubert, M., Spooner, N., Pike, A.W., Müller, W., 2010. ESR and U-series analyses of faunal material from Cuddie Springs, NSW, Australia: implications for the timing of the extinction of the Australian megafauna. Quaternary Science Reviews 29, 596610.10.1016/j.quascirev.2009.11.004CrossRefGoogle Scholar
Grün, R., Eggins, S., Kinsley, L., Moseley, H., Sambridge, M., 2014. Laser ablation U-series analysis of fossil bones and teeth. Palaeogeography, Palaeoclimatology, Palaeoecology 416, 150167.10.1016/j.palaeo.2014.07.023CrossRefGoogle Scholar
Grün, R., Schwarcz, H.P., Chadam, J., 1988. ESR dating of tooth enamel: coupled correction for U-uptake and U-series disequilibrium. International Journal of Radiation Applications and Instrumentation D 14, 237241.Google Scholar
Horton, T.W., Defliese, W.F., Tripati, A.K., Oze, C., 2016. Evaporation induced 18O and 13C enrichment in lake systems: a global perspective on hydrologic balance effects. Quaternary Science Reviews 131, 365379.10.1016/j.quascirev.2015.06.030CrossRefGoogle Scholar
Kelson, J.R., Huntington, K.W., Breecker, D.O., Burgener, L.K., Gallagher, T.M., Hoke, G.D., Petersen, S.V., 2020. A proxy for all seasons? A synthesis of clumped isotope data from Holocene soil carbonates. Quaternary Science Reviews 234, 106259.10.1016/j.quascirev.2020.106259CrossRefGoogle Scholar
Key, R.M., Rop, B.K., Rundle, C.C., 1987. Geology of the Marsabit Area. Report 108. Republic of Kenya Ministry of Environment and Natural Resources, Mines and Geological Department, Nairobi.Google Scholar
Kotikot, S.M., Smithwick, E.A., Greatrex, H., 2024. Observations of enhanced rainfall variability in Kenya, East Africa. Scientific Reports 14, 12915.10.1038/s41598-024-63786-2CrossRefGoogle ScholarPubMed
Lamb, H.F., Bates, C.R., Bryant, C.L., Davies, S.J., Huws, D.G., Marshall, M.H., Roberts, H.M., 2018. 150,000-year palaeoclimate record from northern Ethiopia supports early, multiple dispersals of modern humans from Africa. Scientific Reports 8, 1077.10.1038/s41598-018-19601-wCrossRefGoogle ScholarPubMed
Leslie, D.E., McBrearty, S., Hartman, G., 2016. A Middle Pleistocene intense monsoonal episode from the Kapthurin Formation, Kenya: stable isotopic evidence from bovid teeth and pedogenic carbonates. Palaeogeography, Palaeoclimatology, Palaeoecology 449, 2740.10.1016/j.palaeo.2016.02.010CrossRefGoogle Scholar
Levin, N.E., Brown, F.H., Behrensmeyer, A.K., Bobe, R., Cerling, T.E., 2011. Paleosol carbonates from the Omo Group: isotopic records of local and regional environmental change in East Africa. Palaeogeography, Palaeoclimatology, Palaeoecology 307, 7589.10.1016/j.palaeo.2011.04.026CrossRefGoogle Scholar
Li, H.-C., Ku, T.-L., 1997. δ13C–δ18C covariance as a paleohydrological indicator for closed-basin lakes. Palaeogeography, Palaeoclimatology, Palaeoecology 133, 6980.10.1016/S0031-0182(96)00153-8CrossRefGoogle Scholar
Liang, P., Forman, S.L., 2019. LDAC: an Excel-based program for luminescence equivalent dose and burial age calculations. Ancient TL 37, 2140.10.26034/la.atl.2019.536CrossRefGoogle Scholar
Lisiecki, L.E., Raymo, M.E., 2005. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20. https://doi.org/10.1029/2004PA001071.Google Scholar
Lukens, W.E., Lehmann, T., Peppe, D.J., Fox, D.L., Driese, S.G., McNulty, K.P., 2017. The Early Miocene Critical Zone at Karungu, western Kenya: an equatorial, open habitat with few primate remains. Frontiers of Earth Science 5, 87.10.3389/feart.2017.00087CrossRefGoogle Scholar
Martínez-Pillado, V., Demuro, M., Ortiz, J.E., Shao, Q., Arnold, L.J., Duval, M., Cheng, H., Torres, T., Santos, E., Falguères, C., 2024. Constraining the age of the Pleistocene sedimentary infill of Cueva Mayor (Atapuerca, N Spain) through a multi-technique dating approach. Quaternary Geochronology 83, 101576.10.1016/j.quageo.2024.101576CrossRefGoogle Scholar
McBrearty, S., Brooks, A.S., 2000. The revolution that wasn’t: a new interpretation of the origin of modern human behavior. Journal of Human Evolution 39, 453563.10.1006/jhev.2000.0435CrossRefGoogle ScholarPubMed
McFadden, L.D., Wells, S.G., Dohrenwend, J.C., 1986. Influences of Quaternary climatic changes on processes of soil development on desert loess deposits of the Cima volcanic field, California. Catena 13, 361389.10.1016/0341-8162(86)90010-XCrossRefGoogle Scholar
Miall, A.D., 1996. The Geology of Fluvial Deposits: Sedimentary Facies, Basin Analysis. Springer, Berlin.Google Scholar
Michon, L., Famin, V., Quidelleur, X., 2022. Evolution of the East African Rift system from trap-scale to plate-scale rifting. Earth-Science Reviews 231, 104089.10.1016/j.earscirev.2022.104089CrossRefGoogle Scholar
Morley, C.K., Bosworth, W., Day, R.A., Lauck, R., Bosher, R., Stone, D.M., Wigger, S.T., Wescott, W.A., Haun, D., Bassett, N., 1999. Geology and geophysics of the Anza Graben. In: Morley, C.K. (Ed.), Geoscience of Rift Systems—Evolution of East Africa. AAPG Studies in Geology 44. https://doi.org/10.1306/St44623C4.CrossRefGoogle Scholar
Munday, C., Engelstaedter, S., Ouma, G., Ogutu, G., Olago, D., Ong’ech, D., Lees, T., Wanguba, B., Nkatha, R., Ogalo, C., 2022. Observations of the Turkana Jet and the East African dry tropics: the RIFTJet field campaign. Bulletin of the American Meteorological Society 103, E1828E1842.10.1175/BAMS-D-21-0214.1CrossRefGoogle Scholar
Munday, C., Savage, N., Jones, R.G., Washington, R., 2023. Valley formation aridifies East Africa and elevates Congo Basin rainfall. Nature 615, 276279.10.1038/s41586-022-05662-5CrossRefGoogle ScholarPubMed
Munday, C., Washington, R., Hart, N., 2021. African low‐level jets and their importance for water vapor transport and rainfall. Geophysical Research Letters 48, e2020GL090999.10.1029/2020GL090999CrossRefGoogle Scholar
Murray, A.S., Wintle, A.G., 2003. The single aliquot regenerative dose protocol: potential for improvements in reliability. Radiation Measurements 37, 377381.10.1016/S1350-4487(03)00053-2CrossRefGoogle Scholar
Nash, D.J., De Cort, G., Chase, B.M., Verschuren, D., Nicholson, S.E., Shanahan, T.M., Asrat, A., Lézine, A.-M., Grab, S.W., 2016. African hydroclimatic variability during the last 2000 years. Quaternary Science Reviews 154, 122.10.1016/j.quascirev.2016.10.012CrossRefGoogle Scholar
Neudorf, C.M., Lian, O.B., McIntosh, P.D., Gingerich, T.B., Augustinus, P.C., 2019. Investigation into the OSL and TT-OSL signal characteristics of ancient (>100 ka) Tasmanian aeolian quartz and its utility as a geochronometer for understanding long-term climate-driven landscape change. Quaternary Geochronology 53, 101005.10.1016/j.quageo.2019.101005CrossRefGoogle Scholar
Nordt, L.C., Driese, S.G., 2013. Application of the critical zone concept to the deep-time sedimentary record. Sedimentary Record 11, 49.10.2110/sedred.2013.3.4CrossRefGoogle Scholar
Nordt, L.C., Hallmark, C.T., Driese, S.G., Dworkin, S.I., Atchley, S.C., 2012. Biogeochemical characterization of a lithified paleosol: implications for the interpretation of ancient Critical Zones. Geochimica et Cosmochimica Acta 87, 267282.10.1016/j.gca.2012.03.019CrossRefGoogle Scholar
Nutz, A., Schuster, M., Barboni, D., Gassier, G., Van Bocxlaer, B., Robin, C., Ragon, T., Ghienne, J.-F., Rubino, J.-L., 2020. Plio-Pleistocene sedimentation in West Turkana (Turkana Depression, Kenya, East African rift system): paleolake fluctuations, paleolandscapes and controlling factors. Earth-Science Reviews 211, 103415.10.1016/j.earscirev.2020.103415CrossRefGoogle Scholar
Nyamweru, C.K., 1986a. Late Quaternary Environments in the Chalbi Basin, Kenya: Sedimentary and Geomorphological Evidence. United Nations Environment Programme, Nairobi.Google Scholar
Nyamweru, C.K., 1986b. Quaternary environments of the Chalbi basin, Kenya: sedimentary and geomorphological evidence. Geological Society of London Special Publication 25, 297310.10.1144/GSL.SP.1986.025.01.24CrossRefGoogle Scholar
Nyamweru, C.K., Bowman, D., 1989. Climatic changes in the Chalbi desert, north Kenya. Journal of Quaternary Science 4, 131139.10.1002/jqs.3390040204CrossRefGoogle Scholar
Pagonis, V., Wintle, A.G., Chen, R., Wang, X.L., 2008. A theoretical model for a new dating protocol for quartz based on thermally transferred OSL (TT-OSL). Radiation Measurements 43, 704708.10.1016/j.radmeas.2008.01.025CrossRefGoogle Scholar
Passey, B.H., Levin, N.E., Cerling, T.E., Brown, F.H., Eiler, J.M., 2010. High-temperature environments of human evolution in East Africa based on bond ordering in paleosol carbonates. Proceedings of the National Academy of Sciences USA 107, 1124511249.10.1073/pnas.1001824107CrossRefGoogle Scholar
Petersen, S.V., Defliese, W.F., Saenger, C., Daëron, M., Huntington, K.W., John, C.M., Kelson, J.R., et al., 2019. Effects of improved 17O correction on interlaboratory agreement in clumped isotope calibrations, estimates of mineral-specific offsets, and temperature dependence of acid digestion fractionation. Geochemistry, Geophysics, Geosystems 20, 34953519.10.1029/2018GC008127CrossRefGoogle Scholar
Porat, N., Duller, G.A.T., Roberts, H.M., Wintle, A.G., 2009. A simplified SAR protocol for TT-OSL. Radiation Measurements 44, 538542.10.1016/j.radmeas.2008.12.004CrossRefGoogle Scholar
Potts, R., Dommain, R., Moerman, J.W., Behrensmeyer, A.K., Deino, A.L., Riedl, S., Beverly, E.J., et al., 2020. Increased ecological resource variability during a critical transition in hominin evolution. Science Advances 6, eabc8975.10.1126/sciadv.abc8975CrossRefGoogle ScholarPubMed
Potts, R., Faith, J.T., 2022. Mammalian fauna of the Olorgesailie Basin and southern Kenya Rift. In: Reynolds, S.C., Bobe, R. (Eds.), African Paleoecology and Human Evolution. Cambridge University Press, Cambridge, pp. 376383.10.1017/9781139696470.030CrossRefGoogle Scholar
Prescott, J.R., Hutton, J.T., 1994. Cosmic ray contributions to dose rates for luminescence and ESR dating: large depths and long-term time variations. Radiation Measurements 23, 497500.10.1016/1350-4487(94)90086-8CrossRefGoogle Scholar
Pye, K., Tsoar, H., 2009. Aeolian Sand and Sand Dunes. Springer, Berlin.10.1007/978-3-540-85910-9CrossRefGoogle Scholar
Quade, J., Cerling, T.E., Bowman, J.R., 1989. Systematic variations in the carbon and oxygen isotopic composition of pedogenic carbonate along elevation transects in the southern Great Basin, United States. GSA Bulletin 101, 464475.10.1130/0016-7606(1989)101<0464:SVITCA>2.3.CO;22.3.CO;2>CrossRefGoogle Scholar
Quade, J., Eiler, J., Daeron, M., Achyuthan, H., 2013. The clumped isotope geothermometer in soil and paleosol carbonate. Geochimica et Cosmochimica Acta 105, 92107.10.1016/j.gca.2012.11.031CrossRefGoogle Scholar
Quade, J., Levin, N., 2013. East African hominid paleoecology: isotopic evidence from paleosols. In: Sponheimer, M., Lee-Thorp, J.A., Reed, K.E., Ungar, P. (Eds.), Early Hominin Paleoecology. University Press of Colorado, Boulder, pp. 59102.10.5876/9781607322252:c03CrossRefGoogle Scholar
Quade, J., Levin, N.E., Simpson, S.W., Butler, R., McIntosh, W.C., Semaw, S., Kleinsasser, L., Dupont-Nivet, G., Renne, P., Dunbar, N., 2008. The geology of Gona, Afar, Ethiopia. Geological Society of America Special Paper 446, 131.Google Scholar
Reheis, M.C., Goodmacher, J.C., Harden, J.W., McFadden, L.D., Rockwell, T.K., Shroba, R.R., Sowers, J.M., Taylor, E.M., 1995. Quaternary soils and dust deposition in southern Nevada and California. GSA Bulletin 107, 10031022.10.1130/0016-7606(1995)107<1003:QSADDI>2.3.CO;22.3.CO;2>CrossRefGoogle Scholar
Reimer, P.J., Austin, W.E., Bard, E., Bayliss, A., Blackwell, P.G., Ramsey, C.B., Butzin, M., Cheng, H., Edwards, R.L., Friedrich, M., 2020. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62, 725757.10.1017/RDC.2020.41CrossRefGoogle Scholar
Richter, D., Grün, R., Joannes-Boyau, R., Steele, T.E., Amani, F., Rué, M., Fernandes, P., Raynal, J.-P., Geraads, D., Ben-Ncer, A., 2017. The age of the hominin fossils from Jebel Irhoud, Morocco, and the origins of the Middle Stone Age. Nature 546, 293296.10.1038/nature22335CrossRefGoogle ScholarPubMed
Schaebitz, F., Asrat, A., Lamb, H.F., Cohen, A.S., Foerster, V., Duesing, W., Kaboth-Bahr, S., Opitz, S., Viehberg, F.A., Vogelsang, R., 2021. Hydroclimate changes in eastern Africa over the past 200,000 years may have influenced early human dispersal. Communications Earth & Environment 2, 110.10.1038/s43247-021-00195-7CrossRefGoogle Scholar
Schoeneberger, P.J., Wysocki, D.A., Benham, E.C., Staff, Soil Survey, 2012. Field Book for Describing and Sampling Soils. Version 3.0. USDA Natural Resources Conservation Service, National Soil Survey Center, Lincoln, NE.Google Scholar
Shao, Q., Bahain, J.-J., Dolo, J.-M., Falguères, C., 2014. Monte Carlo approach to calculate US-ESR age and age uncertainty for tooth enamel. Quaternary Geochronology 22, 99106.10.1016/j.quageo.2014.03.003CrossRefGoogle Scholar
Shao, Q., Bahain, J.-J., Falguères, C., Dolo, J.-M., Garcia, T., 2012. A new U-uptake model for combined ESR/U-series dating of tooth enamel. Quaternary Geochronology 10, 406411.10.1016/j.quageo.2012.02.009CrossRefGoogle Scholar
Smedley, R.K., Fenn, K., Stanistreet, I.G., Stollhofen, H., Njau, J.K., Schick, K., Toth, N., 2024. Age-depth model for uppermost Ndutu Beds constrains Middle Stone Age technology and climate-induced paleoenvironmental changes at Olduvai Gorge (Tanzania). Journal of Human Evolution 186, 103465.10.1016/j.jhevol.2023.103465CrossRefGoogle ScholarPubMed
Soil Survey Staff, 2014. Keys to Soil Taxonomy. NRCS Soils (accessed September 20 , 2018). https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/home/?cid=NRCS142P2_053580.Google Scholar
Stevens, T., Buylaert, J.-P., Murray, A.S., 2009. Towards development of a broadly-applicable SAR TT-OSL dating protocol for quartz. Radiation Measurements 44, 639645.10.1016/j.radmeas.2009.02.015CrossRefGoogle Scholar
Stewart, M., Clark-Wilson, R., Breeze, P.S., Janulis, K., Candy, I., Armitage, S.J., Ryves, D.B., Louys, J., Duval, M., Price, G.J., 2020. Human footprints provide snapshot of last interglacial ecology in the Arabian interior. Science Advances 6, eaba8940.10.1126/sciadv.aba8940CrossRefGoogle ScholarPubMed
Stimpson, C.M., Lister, A., Parton, A., Clark-Balzan, L., Breeze, P.S., Drake, N.A., Groucutt, H.S., Jennings, R., Scerri, E.M., White, T.S., 2016. Middle Pleistocene vertebrate fossils from the Nefud Desert, Saudi Arabia: implications for biogeography and palaeoecology. Quaternary Science Reviews 143, 1336.10.1016/j.quascirev.2016.05.016CrossRefGoogle Scholar
Stinchcomb, G.E., Quade, J., Levin, N.E., Iverson, N., Dunbar, N., McIntosh, W., Arnold, L.J., Demuro, M., Duval, M., Grün, R., 2023. Fluvial response to Quaternary hydroclimate in eastern Africa: evidence from Gona, Afar, Ethiopia. Quaternary Science Reviews 309, 108083.10.1016/j.quascirev.2023.108083CrossRefGoogle Scholar
Stoops, G., 2003. Guidelines for Analysis and Description of Soil and Regolith Thin Sections. Soil Science Society of America, Madison, Wisconsin.Google Scholar
Svendsen, J., Stollhofen, H., Krapf, C.B., Stanistreet, I.G., 2003. Mass and hyperconcentrated flow deposits record dune damming and catastrophic breakthrough of ephemeral rivers, Skeleton Coast Erg, Namibia. Sedimentary Geology 160, 731.10.1016/S0037-0738(02)00334-2CrossRefGoogle Scholar
Tierney, J.E., deMenocal, P.B., Zander, P.D., 2017. A climatic context for the out-of-Africa migration. Geology 45, 10231026.10.1130/G39457.1CrossRefGoogle Scholar
Tierney, J.E., Russell, J.M., Huang, Y., Damsté, J.S.S., Hopmans, E.C. and Cohen, A.S., 2008. Northern Hemisphere controls on tropical southeast African climate during the past 60,000 years. Science 322, 252255.10.1126/science.1160485CrossRefGoogle ScholarPubMed
Tryon, C.A., 2019. The Middle/Later Stone Age transition and cultural dynamics of late Pleistocene East Africa. Evolutionary Anthropology 28, 267282.10.1002/evan.21802CrossRefGoogle ScholarPubMed
Tryon, C.A., Faith, J.T., 2013. Variability in the Middle Stone Age of eastern Africa. Current Anthropology 54, S234S254.10.1086/673752CrossRefGoogle Scholar
Tryon, C.A., Faith, J.T., Peppe, D.J., Beverly, E.J., Blegen, N., Blumenthal, S.A., Chritz, K.L., Driese, S.G., Patterson, D., Sharp, W.D., 2016. The Pleistocene prehistory of the Lake Victoria basin. Quaternary International 404, 100114.10.1016/j.quaint.2015.11.073CrossRefGoogle Scholar
Tryon, C.A., Peppe, D.J., Tyler Faith, J., Van Plantinga, A., Nightingale, S., Ogondo, J., Fox, D.L., 2012. Late Pleistocene artefacts and fauna from Rusinga and Mfangano islands, Lake Victoria, Kenya. Azania: Archaeological Research in Africa 47, 1438.10.1080/0067270X.2011.647946CrossRefGoogle Scholar
Ufnar, D.F., Gröcke, D.R., Beddows, P.A., 2008. Assessing pedogenic calcite stable-isotope values: can positive linear covariant trends be used to quantify palaeo-evaporation rates? Chemical Geology 256, 4651.10.1016/j.chemgeo.2008.07.022CrossRefGoogle Scholar
Vargas Zeppetello, L.R., Battisti, D.S., Baker, M.B., 2019. The origin of soil moisture evaporation “regimes.” Journal of Climate 32, 69396960.10.1175/JCLI-D-19-0209.1CrossRefGoogle Scholar
Vidal, C., Lane, C., Asrat, A., Barfod, D., Tomlinson, E., Tadesse, A.Z., Yirgu, G., Deino, A., Hutchison, W., Mounier, A., 2022. Age of the oldest Homo sapiens from eastern Africa. Nature 601, 579583.10.1038/s41586-021-04275-8CrossRefGoogle ScholarPubMed
Wagner, G.A., Krbetschek, M., Degering, D., Bahain, J.-J., Shao, Q., Falguères, C., Voinchet, P., Dolo, J.-M., Garcia, T., Rightmire, G.P., 2010. Radiometric dating of the type-site for Homo heidelbergensis at Mauer, Germany. Proceedings of the National Academy of Sciences USA 107, 1972619730.10.1073/pnas.1012722107CrossRefGoogle Scholar
Wang, X.L., Wintle, A.G., Lu, Y.C., 2006. Thermally transferred luminescence in fine-grained quartz from Chinese loess: basic observations. Radiation Measurements 41, 649658.10.1016/j.radmeas.2006.01.001CrossRefGoogle Scholar
Wintle, A.G., Murray, A.S., 2006. A review of quartz optically stimulated luminescence characteristics and their relevance in single-aliquot regeneration dating protocols. Radiation Measurements 41, 369391.10.1016/j.radmeas.2005.11.001CrossRefGoogle Scholar
Wynn, J.G., 2003. Influence of Plio-Pleistocene aridification on human evolution: evidence from paleosols of the Turkana Basin, Kenya. American Journal of Physical Anthropology 123, 106118.10.1002/ajpa.10317CrossRefGoogle Scholar
Zamanian, K., Pustovoytov, K., Kuzyakov, Y., 2016. Pedogenic carbonates: forms and formation processes. Earth-Science Reviews 157, 117.10.1016/j.earscirev.2016.03.003CrossRefGoogle Scholar
Zhao, J., Hu, K., Collerson, K.D., Xu, H., 2001. Thermal ionization mass spectrometry U-series dating of a hominid site near Nanjing, China. Geology 29, 2730.10.1130/0091-7613(2001)029<0027:TIMSUS>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Supplementary material: File

Stinchcomb et al. supplementary material

Stinchcomb et al. supplementary material
Download Stinchcomb et al. supplementary material(File)
File 439.5 KB