Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-25T18:09:22.376Z Has data issue: false hasContentIssue false

Quantifying marine reservoir effect variability along the Northwest Coast of North America

Published online by Cambridge University Press:  15 March 2021

Nicholas Schmuck*
Affiliation:
Department of Anthropology, University of Alaska Fairbanks, 405A Bunnell Building, 1790 Tanana Loop, Fairbanks, Alaska 99709, USA
Joshua Reuther
Affiliation:
Department of Anthropology, University of Alaska Fairbanks, University of Alaska Museum of the North, 1962 Yukon Dr, Fairbanks, Alaska, 99775, USA
James F. Baichtal
Affiliation:
U.S. Forest Service, Tongass National Forest, 1312 Federal Way, Thorne Bay, Alaska 99919, USA
Risa J. Carlson
Affiliation:
U.S. Forest Service, Tongass National Forest, 1312 Federal Way, Thorne Bay, Alaska 99919, USA
*
*Corresponding author: Nicholas Schmuck, Email: nschmuck@alaska.edu

Abstract

Recognition of marine reservoir effect (MRE) spatial and temporal variability must be accounted for in any radiocarbon-based paleoclimate, geomorphological, or archaeological reconstruction in a coastal setting. ΔR values from 37 shell-wood pairs across southern Southeast Alaska provide a robust local evaluation of the MRE, reporting a local Early Holocene weighted ΔR average of 265 ± 205, with a significantly higher ΔR average of 410 ± 60 for samples near limestone karst. Integration with our synthesis of extant MRE calibrations for the Northwest Coast of North America suggests that despite local variability, regional ΔR averages echo proxies for coastal upwelling: regional weighted averages were at their highest in the Bølling-Allerød interstade (575 ± 165) and their lowest in the Younger Dryas stade (−55 ± 110). Weighted ΔR averages across the Northwest Coast rose to a Holocene high during the Early Holocene warm period (245 ± 200) before settling into a stable Holocene average ΔR of 145 ± 165, which persisted until the late Holocene. Our quantification of local and regional shifts in the MRE shines a light on present methodological issues involved in MRE corrections in mixed-feeder, diet-based calibrations of archaeological and paleontological specimens.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Addison, J.A., Finney, B.P., Dean, W.E., Davies, M.H., Mix, A.C., Stoner, J.S., Jaeger, J.M., 2012. Productivity and sedimentary δ15N variability for the last 17,000 years along the northern Gulf of Alaska continental slope. Paleoceanography 27, PA1206. https://doi.org/10.1029/2011PA002161.CrossRefGoogle Scholar
Allen, K.R., Reimer, P.J., Beilman, D.W., Crow, S.E., 2019. An Investigation into 14C offsets in Modern Mollusk Shell and Flesh from Irish Coasts shows no Significant differences in areas of Carbonate Geology. Radiocarbon 61, 19131922.CrossRefGoogle Scholar
Alves, E.Q., Macario, K.D., Urrutia, F.P., Cardoso, R.P., 2019. Accounting for the marine reservoir effect in radiocarbon calibration. Quaternary Science Reviews 209, 129138.CrossRefGoogle Scholar
Armstrong, J.E., 1981. Post-Vashon Wisconsin glaciation, Fraser Lowland, British Columbia. Geological Survey of Canada, Bulletin 322, 34 pp. https://doi.org/10.4095/109532.Google Scholar
Ascough, P., Cook, G., Dugmore, A., 2005a. Methodological approaches to determining the marine radiocarbon reservoir effect. Progress in Physical Geography: Earth and Environment 29, 532547.CrossRefGoogle Scholar
Ascough, P., Cook, G., Dugmore, A., Marian Scott, E., Stewart, P H, 2005b. Influence of mollusk species on marine ΔR determinations. Radiocarbon 47, 433440.CrossRefGoogle Scholar
Austin, W.E.N., Bard, E., Hunt, J.B., Kroon, D., Peacock, J.D., 1995. The 14C age of the Icelandic Vedde Ash: implications for Younger Dryas marine reservoir age corrections. Radiocarbon 37, 5362.CrossRefGoogle Scholar
Bard, E., 1988. Correction of accelerator mass spectrometry 14C ages measured in planktonic foraminifera: paleoceanographic implications. Paleoceanography 3, 635645.CrossRefGoogle Scholar
Bard, E., Arnold, M., Mangerud, J., Paterne, M., Labeyrie, L., Duprat, J., Mélières, M.-A., Sønstegaard, E., Duplessy, J.-C., 1994. The North Atlantic atmosphere-sea surface 14C gradient during the Younger Dryas climatic event. Earth and Planetary Science Letters 126, 275287.CrossRefGoogle Scholar
Bard, E., Hamelin, B., Fairbanks, R.G., Zindler, A., 1990. Calibration of the 14 C timescale over the past 30,000 years using mass spectrometric U-Th ages from Barbados corals: Nature 345, 405410.CrossRefGoogle Scholar
Barrie, J.V., Conway, K.W., 1999. Late Quaternary glaciation and postglacial stratigraphy of the northern Pacific margin of Canada. Quaternary Research 51, 113123.CrossRefGoogle Scholar
Barron, J.A., Bukry, D., Dean, W.E., Addison, J.A., Finney, B., 2009. Paleoceanography of the Gulf of Alaska during the past 15,000 years: results from diatoms, silicoflagellates, and geochemistry. Marine Micropaleontology 72, 176195.CrossRefGoogle Scholar
Bevington, P., 1969. Data Reduction and Error Analysis for the Physical Sciences. New York: McGraw-Hill.Google Scholar
Bondevik, S., Mangerud, J., Birks, H.H., Gulliksen, S., Reimer, P., 2006. Changes in North Atlantic radiocarbon reservoir ages during the Allerød and Younger Dryas. Science 312, 15141517.CrossRefGoogle ScholarPubMed
Briner, J.P., Tulenko, J.P., Young, N.E., Baichtal, J.F., Lesnek, A., 2017. The last deglaciation of Alaska. Cuadernos de Investigación Geográfica 43, 429448. https://doi.org/10.18172/cig.3229.CrossRefGoogle Scholar
Butler, P.G., Scourse, J.D., Richardson, C.A., Wanamaker, A.D., Bryant, C.L., Bennell, J.D., 2009. Continuous marine radiocarbon reservoir calibration and the 13C Suess effect in the Irish Sea: Results from the first multi-centennial shell-based marine master chronology. Earth and Planetary Science Letters 279, 230241.CrossRefGoogle Scholar
Butzin, M., Heaton, T.J., Köhler, P., Lohmann, G., 2020. A Short Note on Marine Reservoir Age Simulations Used in IntCal20. Radiocarbon 62, 865871.CrossRefGoogle Scholar
Butzin, M., Prange, M., Lohmann, G., 2005. Radiocarbon simulations for the glacial ocean: the effects of wind stress, Southern Ocean sea ice and Heinrich events. Earth and Planetary Science Letters 235, 4561.CrossRefGoogle Scholar
Cahill, J.A., Heintzman, P.D., Harris, K., Teasdale, M.D., Kapp, J., Soares, A.E.R., Stirling, I., et al. , 2018. Genomic Evidence of Widespread Admixture from Polar Bears into Brown Bears during the Last Ice Age. Molecular Biology and Evolution 35, 11201129.CrossRefGoogle ScholarPubMed
Cahill, J.A., Stirling, I., Kistler, L., Salamzade, R., Ersmark, E., Fulton, T.L., Stiller, M., Green, R.E., Shapiro, B., 2015. Genomic evidence of geographically widespread effect of gene flow from polar bears into brown bears. Molecular Ecology 24, 12051217.CrossRefGoogle ScholarPubMed
Carlson, R.J., 2007. Current Models for the Human Colonization of the Americas: The Evidence from Southeast Alaska. Master's thesis, University of Cambridge.Google Scholar
Carlson, R.J., 2012. A Predictive Model for Early Holocene Archaeological Sites in Southeast Alaska Based on Elevated Palaeobeaches. Ph.D. dissertation, University of Cambridge.Google Scholar
Carlson, R.J., Baichtal, J.F., 2015. A predictive model for locating early Holocene archaeological sites based on raised shell-bearing strata in Southeast Alaska, USA. Geoarchaeology 30, 120138.CrossRefGoogle Scholar
Clark, C.T., Horstmann, L., Misarti, N., 2019. Lipid normalization and stable isotope discrimination in Pacific walrus tissues. Scientific Reports 9, 5843. https://doi.org/10.1038/s41598-019-42095-z.CrossRefGoogle ScholarPubMed
Cook, G.T., Ascough, P.L., Bonsall, C., Hamilton, W.D., Russell, N., Sayle, K.L., Scott, E.M., Bownes, J.M., 2015. Best practice methodology for 14C calibration of marine and mixed terrestrial/marine samples. Quaternary Geochronology 27, 164171. https://doi.org/10.1016/j.quageo.2015.02.024.CrossRefGoogle Scholar
Cui, Y., Miller, D., Nixon, G., Nelson, J., 2018. British Columbia digital geology. British Columbia Ministry of Energy, Mines and Petroleum Resources, British Columbia Geological Survey Open File 2017-8, 9 pp. Data version 2019-12-19.Google Scholar
Darvill, C.M., Menounos, B., Goehring, B.M., 2018. Retreat of the western Cordilleran Ice Sheet margin during the last deglaciation. Geophysical Research Letters 45, 97109720. https://doi.org/10.1029/2018GL079419.CrossRefGoogle Scholar
Davies, M.H., Mix, A.C., Stoner, J.S., Addison, J.A., Jaeger, J., Finney, B., Wiest, J., 2011. The deglacial transition on the southeastern Alaska Margin: meltwater input, sea level rise, marine productivity, and sedimentary anoxia. Paleoceanography 26, PA2223. https://doi.org/10.1029/2010PA002051.CrossRefGoogle Scholar
de Flamingh, A., Mallott, E.K., Roca, A.L., Boraas, A.S., Malhi, R.S., 2018. Species identification and mitochondrial genomes of ancient fish bones from the Riverine Kachemak tradition of the Kenai Peninsula, Alaska. Mitochondrial DNA Part B 3, 409411.CrossRefGoogle ScholarPubMed
Dixon, E.J., Heaton, T.H., Fifield, T.E., Hamilton, T.D., Putnam, D.E., Frederick, G., 1997. Late Quaternary regional geoarchaeology of Southeast Alaska karst: a progress report. Geoarchaeology 12, 689712. https://doi.org/10.1002/(SICI)1520-6548(199709)12:6<689::AID-GEA8>3.0.CO;2-V.3.0.CO;2-V>CrossRefGoogle Scholar
Dixon, E.J., Heaton, T.H., Lee, C.M., Fifield, T.E., Coltrain, J.B., Kemp, B.M., Owsley, D.W., Parrish, E., Turner, C.G., Edgar, H.J.H., Others, 2014. Evidence of maritime adaptation and coastal migration from southeast Alaska. In: Owsley, D.W., Jantz, R.L., (Eds.), Kennewick Man: The Scientific Investigation of an Ancient American Skeleton. Texas A&M University Press, College Station, TX, 537548.Google Scholar
Dreiss, S.J., 1989. Regional scale transport in a Karst Aquifer: 1. Component separation of spring flow hydrographs. Water Resources Research 25, 117125.CrossRefGoogle Scholar
Dumond, D.E., Griffin, D.G., 2002. Measurements of the Marine Reservoir Effect on Radiocarbon Ages in the Eastern Bering Sea. Arctic 55, 7786.CrossRefGoogle Scholar
Dunn, O.J., 1964, Multiple comparisons using rank sums. Technometrics 6, 241252.CrossRefGoogle Scholar
Dye, T., 1994. Apparent ages of marine shells: implications for archaeological dating in Hawai'i. Radiocarbon 36, 5157.CrossRefGoogle Scholar
Dyke, A., Dale, J., McNeely, R., 1996. Marine molluscs as indicators of environmental change in glaciated North America and Greenland during the last 18 000 years. Géographie physique et Quaternaire 50, 125184.CrossRefGoogle Scholar
Dyke, A., Savelle, J.M., Szpak, P., Southon, J.R., Howse, L., Desrosiers, P.M., Kotar, K., 2019. An assessment of marine reservoir corrections for radiocarbon dates on walrus from the Foxe Basin region of Arctic Canada. Radiocarbon 61, 6781.CrossRefGoogle Scholar
Edinborough, K., Martindale, A., Cook, G.T., Supernant, K., Ames, K.M., 2016. A marine reservoir effect ΔR value for Kitandach, in Prince Rupert Harbour, British Columbia, Canada. Radiocarbon 58, 885891.CrossRefGoogle Scholar
Eide, M., Olsen, A., Ninnemann, U.S., Eldevik, T., 2017. A global estimate of the full oceanic 13C Suess effect since the preindustrial. Global Biogeochemical Cycles 31, 492514.CrossRefGoogle Scholar
Eldridge, M., Parker, A., Mueller, C., Crockford, S., 2014. Archaeological investigations at Ya asqalu'i/Kaien Siding, Prince Rupert Harbour. Report Prepared by Millennia Research Limited for the Canadian National Railway, Lax Kw'alaams First Nation, and Metlakatla First Nation, 453 pp.Google Scholar
Ersek, V., Clark, P.U., Mix, A.C., Cheng, H., Edwards, R.L., 2012. Holocene winter climate variability in mid-latitude western North America: Nature communications 3, 1219. https://doi.org/10.1038/ncomms2222.CrossRefGoogle ScholarPubMed
Fedje, D., Mackie, Q., Lacourse, T., McLaren, D., 2011. Younger Dryas environments and archaeology on the Northwest Coast of North America. Quaternary International 242, 452462.CrossRefGoogle Scholar
Fitzhugh, B., Brown, W.A., 2018. Reservoir correction for the Central and North Kuril Islands in North Pacific context. Radiocarbon 60, 441452.CrossRefGoogle Scholar
Forman, S.L., Polyak, L., 1997. Radiocarbon content of pre-bomb marine mollusks and variations in the 14C Reservoir age for coastal areas of the Barents and Kara seas, Russia. Geophysical Research Letters 24, 885888.CrossRefGoogle Scholar
Gillikin, D.P., Lorrain, A., Bouillon, S., Willenz, P., Dehairs, F., 2006. Stable carbon isotopic composition of Mytilus edulis shells: relation to metabolism, salinity, δ13CDIC and phytoplankton. Organic Geochemistry 37, 13711382.CrossRefGoogle Scholar
Gruber, N., Keeling, C.D., Bacastow, R.B., Guenther, P.R., Lueker, T.J., Wahlen, M., Meijer, H.A.J., Mook, W.G., Stocker, T.F., 1999. Spatiotemporal patterns of carbon-13 in the global surface oceans and the oceanic Suess effect. Global Biogeochemical Cycles 13, 307335.CrossRefGoogle Scholar
Heaton, T., Grady, G., 2003. The late Wisconsin vertebrate history of Prince of Wales Island, Southeast Alaska. In: Schubert, B.W., Mead, J.I., Graham, R.W. (Eds.), Ice Age Cave Faunas of North America. Indiana University Press, Bloomington, IN 1753.Google Scholar
Hetherington, R., Barrie, J.V., Reid, R.G.B., MacLeod, R., Smith, D.J., James, T.S., Kung, R., 2003. Late Pleistocene coastal paleogeography of the Queen Charlotte Islands, British Columbia, Canada, and its implications for terrestrial biogeography and early postglacial human occupation. Canadian Journal of Earth Sciences 40, 17551766.CrossRefGoogle Scholar
Hetherington, R., Reid, R.G.B., 2003. Malacological insights into the marine ecology and changing climate of the late Pleistocene–early Holocene Queen Charlotte Islands archipelago, western Canada, and implications for early peoples. Canadian Journal of Zoology 81, 626661.CrossRefGoogle Scholar
Hutchinson, I., 2020, Spatiotemporal variation in ΔR on the West Coast of North America in the late Holocene: implications for dating the shells of marine mollusks. American Antiquity 85, 676693.CrossRefGoogle Scholar
Hutchinson, I., James, T.S., Reimer, P.J., Bornhold, B.D., Clague, J.J., 2004. Marine and limnic radiocarbon reservoir corrections for studies of late- and postglacial environments in Georgia Basin and Puget Lowland, British Columbia, Canada and Washington, USA. Quaternary Research 61, 193203.CrossRefGoogle Scholar
Ingram, B.L., Southon, J.R., 1996. Reservoir ages in eastern Pacific coastal and estuarine waters. Radiocarbon 38, 573582. https://doi.org/10.1017/S0033822200030101.CrossRefGoogle Scholar
Kaufman, D.S., Axford, Y.L., Henderson, A.C.G., McKay, N.P., Oswald, W.W., Saenger, C., Anderson, R.S., et al. , 2016. Holocene climate changes in eastern Beringia (NW North America)—a systematic review of multi-proxy evidence. Quaternary Science Reviews 147, 312339. https://doi.org/10.1016/j.quascirev.2015.10.021.CrossRefGoogle Scholar
Khasanov, B.F., Nakamura, T., Okuno, M., Gorlova, E.N., Krylovich, O.A., West, D.L., Hatfield, V., Savinetsky, A.B., 2015. The marine radiocarbon reservoir effect on Adak Island (Central Aleutian Islands), Alaska. Radiocarbon 57, 955964.CrossRefGoogle Scholar
Kovanen, D.J., Easterbrook, D.J., 2002. Paleodeviations of radiocarbon marine reservoir values for the northeast Pacific. Geology 30, 243246.2.0.CO;2>CrossRefGoogle Scholar
Lesnek, A.J., Briner, J.P., Baichtal, J.F., and Lyles, A.S., 2020. New constraints on the last deglaciation of the Cordilleran Ice Sheet in coastal Southeast Alaska. Quaternary Research 96, 140160. https://doi.org/10.1017/qua.2020.32.CrossRefGoogle Scholar
Lesnek, A.J., Briner, J.P., Lindqvist, C., Baichtal, J.F., Heaton, T.H., 2018. Deglaciation of the Pacific coastal corridor directly preceded the human colonization of the Americas. Science Advances 4, eaar5040. https://doi.org/10.1126/sciadv.aar5040.CrossRefGoogle ScholarPubMed
Letham, B., Martindale, A., Waber, N., Ames, K.M., 2018. Archaeological survey of dynamic coastal landscapes and paleoshorelines: locating early Holocene sites in the Prince Rupert Harbour area, British Columbia, Canada. Journal of Field Archaeology 43, 181199.CrossRefGoogle Scholar
Lindqvist, C., 2019. Population genomic perspectives on Ice Age mammal biogeography in Southeast Alaska. Plant and Animal Genome (PAG) XXVII Conference (January 12–16, 2019). https://pag.confex.com/pag/xxvii/meetingapp.cgi/Paper/36362.Google Scholar
Long, A., Rippeteau, B., 1974. Testing Contemporaneity and Averaging Radiocarbon Dates. American Antiquity 39, 205215.CrossRefGoogle Scholar
Martindale, A., Cook, G.T., McKechnie, I., Edinborough, K., Hutchinson, I., Eldridge, M., Supernant, K., Ames, K.M., 2018. Estimating marine reservoir effects in archaeological chronologies: comparing ΔR calculations in Prince Rupert Harbour, British Columbia, Canada. American Antiquity 83, 659680.CrossRefGoogle Scholar
McConnaughey, T.A., Gillikin, D.P., 2008. Carbon isotopes in mollusk shell carbonates. Geo-Marine Letters 28, 287299.CrossRefGoogle Scholar
McNeely, R., Dyke, A.S., Southon, J.R., 2006. Canadian Marine Reservoir Ages Preliminary Data Assessment. Geological Survey of Canada, Open File 5049. https://dx.doi.org/10.13140/2.1.1461.6649.CrossRefGoogle Scholar
Menounos, B., Goehring, B.M., Osborn, G., Margold, M., Ward, B., Bond, J., Clarke, G.K.C., et al. , 2017. Cordilleran Ice Sheet mass loss preceded climate reversals near the Pleistocene Termination. Science 358, 781784.CrossRefGoogle ScholarPubMed
Misarti, N., Finney, B., Maschner, H., Wooller, M.J., 2009. Changes in northeast Pacific marine ecosystems over the last 4500 years: evidence from stable isotope analysis of bone collagen from archeological middens. Holocene 19, 11391151.CrossRefGoogle Scholar
Moss, M.L., 1989. Archaeology and Cultural Ecology of the Prehistoric Angoon Tlingit. Ph.D. dissertation, University of California, Santa Barbara.Google Scholar
Pasch, A.D., Foster, N.R., Irvine, G.V., 2010. Faunal analysis of late Pleistocene–early Holocene invertebrates provides evidence for paleoenvironments of a Gulf of Alaska shoreline inland of the present Bering Glacier margin. Geological Society of America Special Papers 462, 251274.Google Scholar
Potter, B.A., Reuther, J.D., Holliday, V.T., Holmes, C.E., Miller, D.S., Schmuck, N., 2017. Early colonization of Beringia and northern North America: chronology, routes, and adaptive strategies. Quaternary International 444, 3655.CrossRefGoogle Scholar
Praetorius, S.K., Condron, A., Mix, A.C., Walczak, M.H., McKay, J.L., Du, J., 2020. The role of Northeast Pacific meltwater events in deglacial climate change. Science Advances 6, eaay2915. https://doi.org/10.1126/sciadv.aay2915.CrossRefGoogle ScholarPubMed
Ramsey, C.L., Griffiths, P.A., Fedje, D.W., Wigen, R.J., Mackie, Q., 2004. Preliminary investigation of a late Wisconsinan fauna from K1 Cave, Queen Charlotte Islands (Haida Gwaii), Canada. Quaternary Research 62, 105109.CrossRefGoogle Scholar
Reimer, P.J., 2014. Marine or estuarine radiocarbon reservoir corrections for mollusks? A case study from a medieval site in the south of England. Journal of Archaeological Science 49, 142146.CrossRefGoogle Scholar
Reimer, P.J., Austin, W.E.N., Bard, E., Bayliss, A., Blackwell, P.G., Bronk Ramsey, C., Butzin, M., Cheng, H., Edwards, R.L., Friedrich, M., Grootes, P.M., Guilderson, T.P., Hajdas, I., Heaton, T.J., Hogg, A.G., Hughen, K.A., Kromer, B., Manning, S.W., Muscheler, R., Palmer, J.G., Pearson, C., van der Plicht, J., Reimer, R.W., Richards, D.A., Scott, E.M., Southon, J.R., Turney, C.S.M., Wacker, L., Adolphi, F., Büntgen, U., Capano, M., Fahrni, S.M., Fogtmann-Schulz, A., Friedrich, R., Köhler, P., Kudsk, S., Miyake, F., Olsen, J., Reinig, F., Sakamoto, M., Sookdeo, A., Talamo, S., 2020. The Intcal20 northern hemisphere radiocarbon age calibration curve (0–55 cal kbp). Radiocarbon 62, 133.CrossRefGoogle Scholar
Reimer, P.J., Bard, E., Bayliss, A., Warren Beck, J., Blackwell, P.G., Ramsey, C.B., Buck, C.E., et al. , 2013. IntCal13 and Marine13 Radiocarbon Age Calibration Curves 0–50,000 Years cal BP. Radiocarbon 55, 18691887.CrossRefGoogle Scholar
Reimer, R.W., Reimer, P.J., 2017. An online application for ΔR calculation. Radiocarbon 59, 16231627.CrossRefGoogle Scholar
Reuther, J., Shirar, S., Mason, O., Anderson, S., Coltrain, J., Freeburg, A., Bowers, P., Alix, C., Darwent, C., Norman, L., 2020. Marine reservoir effects in seal (Phocidae) bones in the northern Bering and Chukchi seas, northwestern Alaska. Radiocarbon, 1–19. https://doi.org/10.1017/RDC.2020.127.CrossRefGoogle Scholar
Robinson, S.W., Thompson, G., 1981. Radiocarbon corrections for marine shell dates with application to southern Pacific Northwest Coast prehistory. Syesis 14, 4557.Google Scholar
Russell, N., Cook, G., Ascough, P., Scott, E.M., Dugmore, A.J., 2011. Examining the inherent variability in ΔR: new methods of presenting ΔR values and implications for MRE studies. Radiocarbon 53, 277288.CrossRefGoogle Scholar
Schiffer, M.B., 1986. Radiocarbon dating and the “old wood” problem: the case of the Hohokam chronology: Journal of Archaeological Science 13, 1330.CrossRefGoogle Scholar
Schwarcz, H.P., Chisholm, B.S., Burchell, M., 2014a. Isotopic studies of the diet of the people of the coast of British Columbia. American Journal of Physical Anthropology 155, 460468.CrossRefGoogle Scholar
Schwarcz, H.P., Stafford, T.W. Jr, Knuf, M., Chisholm, B., Longstaffe, F., Chatters, J., Owsley, D.W., 2014b. Stable isotopic evidence for diet and origin. In: Owsley, D.W., Jantz, R.L., (Eds.), Kennewick Man: The Scientific Investigation of an Ancient American Skeleton. Texas A&M University Press, College Station, TX, 310322.Google Scholar
Southon, J., Fedje, D., 2003. A post-glacial record of 14C reservoir ages for the British Columbia coast. Canadian Journal of Archaeology 27, 95111.Google Scholar
Southon, J., Nelson, D.E., Vogel, J.S., 1990. A record of past ocean-atmosphere radiocarbon differences from the northeast Pacific. Paleoceanography 5, 197206.CrossRefGoogle Scholar
Stanford, J.D., Hemingway, R., Rohling, E.J., Challenor, P.G., Medina-Elizalde, M., Lester, A.J., 2011. Sea-level probability for the last deglaciation: a statistical analysis of far-field records: Global and Planetary Change 79, 193203.CrossRefGoogle Scholar
Stokes, T.R., Griffiths, P.A., 2019. An overview of the karst areas in British Columbia, Canada. Geoscience Canada 46, 4966. https://doi.org/10.12789/geocanj.2019.46.145.CrossRefGoogle Scholar
Stuiver, M., Braziunas, T.F., 1993. Modeling atmospheric 14C influences and 14C Ages of marine samples to 10,000 BC. Radiocarbon 35, 137137.CrossRefGoogle Scholar
Stuiver, M., Pearson, G.W., Braziunas, T., 1986. Radiocarbon age calibration of marine samples back to 9000 cal yr BP. Radiocarbon 28, 9801021.CrossRefGoogle Scholar
Taylor, R.E., Bar-Yosef, O., 2014. Radiocarbon Dating, 2nd ed. Left Coast Press, Walnut Creek, California.Google Scholar
Toth, L.T., Cheng, H., Edwards, R.L., Ashe, E., Richey, J.N., 2017. Millennial-scale variability in the local radiocarbon reservoir age of south Florida during the Holocene. Quaternary Geochronology 42, 130143.CrossRefGoogle Scholar
Vacco, D.A., Clark, P.U., Mix, A.C., Cheng, H., Edwards, R.L., 2005. A speleothem record of Younger Dryas cooling, Klamath Mountains, Oregon, USA. Quaternary Research 64, 249256.CrossRefGoogle Scholar
Wagner, J.D.M., Cole, J.E., Beck, J.W., Patchett, P.J., Henderson, G.M., Barnett, H.R., 2010. Moisture variability in the southwestern United States linked to abrupt glacial climate change. Nature Geoscience 3, 110113.CrossRefGoogle Scholar
Walczak, M.H., Mix, A.C., Cowan, E.A., Fallon, S., Keith Fifield, L., Alder, J.R., Du, J., Haley, B., Hobern, T., Padman, J., Praetorius, S.K., Schmittner, A., Stoner, J.S., Zellers, S.D., 2020. Phasing of millennial-scale climate variability in the Pacific and Atlantic Oceans. Science. https://doi.org/10.1126/science.aba7096CrossRefGoogle Scholar
Ward, G.K., Wilson, S.R., 1978. Procedures for Comparing and Combining Radiocarbon Age Determinations: A Critique. Archaeometry 20, 1931.CrossRefGoogle Scholar
Wigen, R.J., 2005. History of the vertebrate fauna in Haida Gwaii. In: Fedje, D.W., Mathewes, R.W. (Eds.), Haida Gwaii, Human History and Environment from the Time of the Loon to the Time of the Iron People. The University of British Columbia Press, Vancouver, BC, 96115.Google Scholar
Supplementary material: PDF

Schmuck et al. supplementary material

Schmuck et al. supplementary material

Download Schmuck et al. supplementary material(PDF)
PDF 606 KB