Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-26T22:58:12.882Z Has data issue: false hasContentIssue false

A Pronounced Dry Event Recorded Around 4.2 ka in Brine Sediments from the Northern Red Sea

Published online by Cambridge University Press:  20 January 2017

Helge W. Arz*
Affiliation:
GeoForschungsZentrum-Potsdam, Telegrafenberg, 14473 Potsdam, Germany
Frank Lamy
Affiliation:
GeoForschungsZentrum-Potsdam, Telegrafenberg, 14473 Potsdam, Germany
Jürgen Pätzold
Affiliation:
Geowissenschaften, Universität Bremen/RCOM Bremen, Klagenfurterstrasse, 28359 Bremen, Germany
*
Corresponding author. Fax: +49 0 331 288 1302. E-mail address:harz@gfz-potsdam.de (H.W. Arz).

Abstract

Partly laminated sediments were sampled from the brine-filled, anoxic Shaban Deep basin in the northern Red Sea. At about 4200 cal yr BP more than two millennia of anoxic sedimentation is replaced by a sub-oxic facies strongly suggesting the episodic absence of the brine. At the same time stable oxygen isotopes from surface dwelling foraminifera show a sharp increase (within less than 100 yr) pointing to a strong positive salinity anomaly at the sea surface. This major evaporation event significantly enhanced the renewal of deep water and the subsequent ventilation of the small Shaban Deep basin. The timing and strength of the reconstructed environmental changes around 4200 cal yr BP suggest that this event is the regional expression of a major drought event, which is widely observed in the neighboring regions, and which strongly affected Middle East agricultural civilizations.

Type
Special Issue Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Almogi-Labin, A., Hemleben, C., and Meischner, D. Carbonate preservation and climatic changes in the central Red Sea during the last 380 kyr as recorded by pteropods. Marine Micropaleontology 33, (1998). 87107.CrossRefGoogle Scholar
Andrié, C., and Merlivat, L. Contribution des données isotopiques de déuterium, oxygène-18, hélium-3 et tritium, à l'étude de la circulation de la Mer Rouge. Oceanologica Acta 12, (1989). 165174.Google Scholar
Arz, H.W., Lamy, F., Pätzold, J., Müller, P.J., and Prins, M. Mediterranean moisture source for an early-Holocene humid period in the northern Red Sea. Science 300, (2003). 118122.CrossRefGoogle ScholarPubMed
Arz, H.W., Pätzold, J., Müller, P.J., and Moammar, M.O. Influence of Northern Hemisphere climate and global sea level rise on the restricted Red Sea marine environment during termination I. Paleoceanography 18, (2003). 31-131-13.CrossRefGoogle Scholar
Bar-Matthews, M., Ayalon, A., Kaufman, A., and Wasserburg, G.J. The Eastern Mediterranean paleoclimate as a reflection of regional events: Soreq cave, Israel. Earth and Planetary Science Letters 166, (1999). 8595.CrossRefGoogle Scholar
Bar-Matthews, M., Ayalon, A., and Kaufman, A. Timing and hydrological conditions of Sapropel events in the Eastern Mediterranean, as evident from speleothems, Soreq cave, Israel. Chemical Geology 169, (2000). 145156.CrossRefGoogle Scholar
Bemis, B.E., Spero, H.J., Bijma, J., and Lea, D.W. Reevaluation of the oxygen isotopic composition of planktonic foraminifera: experimental results and revised paleotemperature equations. Paleoceanography 13, (1998). 150160.CrossRefGoogle Scholar
Ben Gai, T., Bitan, A., Manes, A., Alpert, P., and Kushnir, Y. Temperature and surface pressure anomalies in Israel and the North Atlantic Oscillation. Theoretical and Applied Climatology 69, (2001). 171177.CrossRefGoogle Scholar
Bonatti, E. Punctiform initiation of seafloor spreading in the Red Sea during transition from a continental to an oceanic rift. Nature 316, (1985). 3337.CrossRefGoogle Scholar
Bond, G., Kromer, B., Beer, J., Muscheler, R., Evans, M.N., Showers, W., Hoffmann, S., Lotti-Bond, R., Hajdas, I., and Bonani, G. Persistent solar influence on north Atlantic climate during the Holocene. Science 294, (2001). 21302136.CrossRefGoogle ScholarPubMed
Cember, R.P. On the sources, formation and circulation of Red Sea deep water. Journal of Geophysical Research 93, (1988). 81758191.CrossRefGoogle Scholar
Craig, H. Isotopic composition and origin of the Red Sea and Salton Sea geothermal brines. Science 154, (1966). 15441548.CrossRefGoogle ScholarPubMed
Cullen, H.M., and deMenocal, P.B. North Atlantic influence on Tigris-Euphrates streamflow. International Journal of Climatology 20, (2000). 853863.3.0.CO;2-M>CrossRefGoogle Scholar
Cullen, H.M., De Menocal, P.B., Hemming, S., Brown, F.H., Guilderson, T., and Sirocko, F. Climate change and the collapse of the Akkadian empire: evidence from the deep sea. Geology 28, (2000). 379382.2.0.CO;2>CrossRefGoogle Scholar
Cullen, H.M., D, , , A.R.D., Cook, E.R., and Mann, M.E. Multiproxy reconstructions of the North Atlantic Oscillation. Paleoceanography 16, (2001). 2739.CrossRefGoogle Scholar
Dalfes, H.N., Kukla, G., Weiss, H. Third Millennium BC Climate Change and Old World Collapse. Series I: Global Environmental Change 49, (1997). Springer-Verlag, Berlin. 728 Google Scholar
Edwards, F.J. Climate and oceanography. Edwards, F.J., and Head, S.M. Red Sea. (1987). Pergamon Press, Oxford. 4570.Google Scholar
Enzel, Y., Bookman, R., Sharon, D., Gvirtzman, H., Dayan, U., Ziv, B., and Stein, M. Late Holocene climates of the Near East deduced from Dead Sea level variations and regional winter rainfall. Quaternary Research 60, (2003). 263273.CrossRefGoogle Scholar
Eshel, G. Mediterranean climates. Israel Journal of Earth Sciences 51, (2002). 157168.CrossRefGoogle Scholar
Eshel, G., and Naik, N.H. Climatological coastal jet collision, intermediate water formation, and the general circulation of the Red Sea. Journal of Physical Oceanography 27, (1997). 12331257.2.0.CO;2>CrossRefGoogle Scholar
Eshel, G., Schrag, D.P., and Farrell, B.F. Troposphere–planetary boundary layer interactions and the evolution of ocean surface density: lessons from Red Sea corals. Journal of Climate 13, (2000). 339351.2.0.CO;2>CrossRefGoogle Scholar
Felis, T., Pätzold, J., Loya, Y., Fine, M., Nawar, A.H., and Wefer, G. A coral oxygen isotope record from the northern Red Sea documenting NAO, ENSO, and North Pacific teleconnections on Middle East climate variability since the year 1750. Paleoceanography 15, (2000). 679694.CrossRefGoogle Scholar
Felis, T., Lohmann, G., Kuhnert, H., Lorenz, S.J., Scholz, D., Pätzold, J., Al Rousan, S.A., and Al Moghrabi, S.M. Increased seasonality in Middle East temperatures during the last interglacial period. Nature 429, (2004). 164168.CrossRefGoogle ScholarPubMed
Fleitmann, D., Burns, S.J., Mudelsee, M., Neff, U., Kramers, J., Mangini, A., and Matter, A. Holocene forcing of the Indian monsoon recorded in a stalagmite from Southern Oman. Science 300, (2003). 17371739.CrossRefGoogle Scholar
Gasse, F. Hydrological changes in the African tropics since the Last Glacial Maximum. Quaternary Science Reviews 19, (2000). 189211.CrossRefGoogle Scholar
Gasse, F., and Van Campo, E. Abrupt post-glacial climate events in West Asia and North Africa monsoon domains. Earth and Planetary Science Letters 126, (1994). 435456.CrossRefGoogle Scholar
Ghebreab, W. Tectonics of the Red Sea region reassessed. Earth-Science Reviews 45, (1998). 144.CrossRefGoogle Scholar
Gupta, A.K., Anderson, D.M., and Overpeck, J.T. Abrupt changes in the Asian southwest monsoon during the holocene and their links to the North Alantic Ocean. Nature 421, (2003). 354357.CrossRefGoogle Scholar
Hartmann, M., Scholten, J.C., Stoffers, P., and Wehner, F. Hydrographic structure of brine-filled deeps in the Red Sea—New results from the Shaban, Kebrit, Atlantis II, and discovery deep. Marine Geology 144, (1998). 311330.CrossRefGoogle Scholar
Haug, G.H., Gunther, D., Peterson, L.C., Sigman, D.M., Hughen, K.A., and Aeschlimann, B. Climate and the collapse of Maya civilization. Science 299, (2003). 17311735.CrossRefGoogle ScholarPubMed
Hecht, A.D. Size variations in planktonic foraminifera; implications for quantitative paleoclimatic analysis. Science 192, (1976). 13301332.CrossRefGoogle Scholar
Lamy, F., Arz, H.W., Bond, G., Pätzold, J., and Bahr, A. Multicentennial-scale hydrological changes in the Black Sea and northern Red Sea during the Holocene and the Arctic/North Atlantic Oscillation. Paleoceanography 21, (2006). PA1008 1PA1008 11.CrossRefGoogle Scholar
Magny, M. Holocene climate variability as reflected by mid-European lake-level fluctuations and its probable impact on prehistoric human settlements. Quaternary International 113, (2004). 6579.CrossRefGoogle Scholar
Manins, P.C. A filling box model of the deep circulation of the Red Sea. Memoires de la Societe Royale des Sciences de Lieges Tome IV (1973). 153166.Google Scholar
Müller, P.J., Kirst, G., Ruhland, G., Von Storch, I., and Rosell-Mele, A. Calibration of the alkenone paleotemperature index UK 37 based on core-tops from the eastern South Atlantic and the global ocean (60°N–60°S). Geochimica et Cosmochimica Acta 62, (1998). 17571772.CrossRefGoogle Scholar
Nadeau, M.-J., Schleicher, M., Grootes, P.M., Erlenkeuser, H., Gottdang, A., Mous, D.J.W., Sarnthein, J.M., and Willkomm, H. The Leibniz-Labor AMS facility at the Christian-Albrechts University, Kiel, Germany. Nuclear Instruments and Methods in Physics Research B 123, (1997). 2230.CrossRefGoogle Scholar
Pätzold, J., Cruise participants, (1999). “Report and preliminary results of Meteor Cruise M 44/3, Aqaba (Jordan)-Safaga (Egypt)-Duba (Saudi Arabia)-Suez (Egypt)-Haifa (Israel). March 12–March 26–April 2–April 4, (1999).” pp. 135. Berichte, Fachbereich Geowissenschaften 149, Universität Bremen, Bremen.Google Scholar
Pätzold, J., Bohrmann, G., and Hübscher, C., (2003). Black Sea–Mediterranean–Red Sea. Meteor Cruise No. 52, January 2–March 27, (2002). pp. 178. Universität Hamburg, Hamburg.Google Scholar
Pautot, G., Guennoc, P., Coutelle, A., and Lyberis, N. Discovery of a large brine deep in the northern Red Sea. Nature 310, (1984). 133136.CrossRefGoogle Scholar
Prahl, F.G., Muehlhausen, L.A., and Zahnle, D.L. Further evaluation of long-chain alkenones as indicators of paleoceanographic conditions. Geochimica et Cosmochimica Acta 52, (1988). 23032310.CrossRefGoogle Scholar
Ravelo, A.C., and Fairbanks, R.G. Oxygen isotopic composition of multiple species of planktonic foraminifera: recorders of the modern photic zone temperature gradient. Paleoceanography 7, (1992). 815831.CrossRefGoogle Scholar
Rimbu, N., Lohmann, G., Felis, T., and Pätzold, J. Arctic oscillation signature in a Red Sea coral. Geophysical Research Letters 28, (2001). 29592962.CrossRefGoogle Scholar
Rodwell, M.J., and Hoskins, B.J. Monsoons and the dynamics of deserts. Quarterly Journal of the Royal Meteorological Society 122, (1996). 13851404.CrossRefGoogle Scholar
Röhl, U., and Abrams, L.J. High-resolution, downhole, and nondestructive core measurements from Sites 999 and 1001 in the Caribbean Sea: application to the late Paleocene thermal Maximum. Proceedings of the Ocean Drilling Program, Scientific Results 165, (2000). 191203.Google Scholar
Rossignol-Strick, M. Rainy periods and bottom water stagnation initiating brine accumulation and metal concentrations: 1. The late Quaternary. Paleoceanography 2, (1987). 333360.CrossRefGoogle Scholar
Schmidt, D.N., Thierstein, H.R., Bollmann, J., and Schiebel, R. Abiotic forcing of plankton evolution in the Cenozoic. Science 303, (2004). 207210.CrossRefGoogle ScholarPubMed
Seeberg-Elverfeldt, I.A., Lange, C.B., Arz, H.W., Pätzold, J., and Pike, J. The significance of diatoms in the formation of laminated sediments of the Shaban Deep, Northern Red Sea. Marine Geology 209, (2004). 279301.CrossRefGoogle Scholar
Siddall, M., Smeed, D.A., Matthiesen, S., and Rohling, E.J. Modelling the seasonal cycle of the exchange flow in Bab El Mandab (Red Sea). Deep Sea Research Part I: Oceanographic Research Papers 49, (2002). 15511569.CrossRefGoogle Scholar
Siddall, M., Rohling, E.J., Almogi Labin, A., Hemleben, C., Meischner, D., Schmelzer, I., and Smeed, D.A. Sea-level fluctuations during the last glacial cycle. Nature 423, (2003). 853858.CrossRefGoogle ScholarPubMed
Smeed, D. Seasonal variation of the flow in the strait of Bah al Mandab. Oceanologica Acta 20, (1997). 773781.Google Scholar
Sofianos, S.S., Johns, W.E., and Murray, S.P. Heat and freshwater budgets in the Red Sea from direct observations at Bab el Mandeb. Deep Sea Research Part II: Topical Studies in Oceanography 49, (2002). 13231340.CrossRefGoogle Scholar
Staubwasser, M., Sirocko, F., Grootes, P.M., and Segl, M. Climate change at the 4.2 ka BP termination of the Indus valley civilization and Holocene south Asian monsoon variability. Geophysical Research Letters 30, (2003). 7–17–4.CrossRefGoogle Scholar
Stoffers, P., Botz, R., and Scholten, J. Isotope geochemistry of primary and secondary carbonate minerals in the Shaban-Deep (Red Sea). Heling, D., Rothe, P., Foerstner, U., and Stoffers, P. Sediments and Environmental Geochemistry; Selected Aspects and Case Histories. (1990). Springer-Verlag, Berlin. 8394.Google Scholar
Stuiver, M., and Reimer, P.J. Extended 14C data base and revised CALIB 3.0 14C age calibration program. Radiocarbon 35, (1993). 215230.CrossRefGoogle Scholar
Stuiver, M., Reimer, P.J., Bard, E., Beck, J.W., Burr, G.S., Hughen, K.A., Kromer, B., McCormac, F.G., v.d. Plicht, J., and Spurk, M. INTCAL98 Radiocarbon age calibration 24,000-0 cal BP. Radiocarbon 40, (1998). 10411083.CrossRefGoogle Scholar
Stuiver, M., Reimer, P.J., Bard, E., Beck, J.W., Burr, G.S., Hughen, K.A., Kromer, B., McCormac, G., Van der Plicht, J., and Spurk, M. INTCAL98 radiocarbon age calibration, 24,000-0 cal BP. Radiocarbon 40, (1998). 10411083.CrossRefGoogle Scholar
Thompson, L.G., Mosley-Thompson, E., and Henderson, K.A. Ice-core palaeoclimate records in tropical South America since the Last Glacial Maximum. Journal of Quaternary Science 15, (2000). 377394.3.0.CO;2-L>CrossRefGoogle Scholar
Thompson, L.G., Mosley-Thompson, E., Davis, M.E., Henderson, K.A., Brecher, H.H., Zagorodnov, V.S., Mashiotta, T.A., Lin, P.N., Mikhalenko, V.N., Hardy, D.R., and Beer, J. Kilimanjaro ice core records; evidence of Holocene climate change in tropical Africa. Science 298, (2002). 589593.CrossRefGoogle ScholarPubMed
Weiss, H. Beyond the Younger Dryas: collapse as adaptation to abrupt climate change in ancient west Asia and eastern Mediterranean. Bawden, G., and Reycraft, M. Environmental Disaster and the Archeology of Human Response. Anthropological Papers (2001). Maxwell Museum of Anthropology, New Mexico.Google Scholar
Weiss, H., and Bradley, R.S. What drives societal collapse?. Science 291, (2001). 609610.CrossRefGoogle ScholarPubMed
Weiss, H., Courty, M.A., Wetterstrom, W., Guichard, F., Senior, L., Meadow, R., and Curnow, A. The genesis and collapse of third millennium North Mesopotamian civilization. Science 261, (1993). 9951004.CrossRefGoogle ScholarPubMed
Woelk, S., and Quadfasel, D. Renewal of deep water in the Red Sea during 1982–1987. Journal of Geophysical Research-Oceans 101, (1996). 1815518165.CrossRefGoogle Scholar
Zangvil, A., Karas, S., and Sasson, A. Connection between Eastern Mediterranean seasonal mean 500 hpa height and sea-level pressure patterns and the spatial rainfall distribution over Israel. International Journal of Climatology 23, (2003). 15671576.CrossRefGoogle Scholar