Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-13T00:04:11.191Z Has data issue: false hasContentIssue false

Paleoceanographic changes and calcium carbonate dissolution in the central Fram Strait during the last 20 ka

Published online by Cambridge University Press:  04 August 2012

Katarzyna Zamelczyk*
Affiliation:
Department of Geology, University of Tromsø, N-9037 Tromsø, Norway
Tine L. Rasmussen
Affiliation:
Department of Geology, University of Tromsø, N-9037 Tromsø, Norway
Katrine Husum
Affiliation:
Department of Geology, University of Tromsø, N-9037 Tromsø, Norway
Haflidi Haflidason
Affiliation:
Department of Earth Science, University of Bergen, N-5007 Bergen, Norway
Anne de Vernal
Affiliation:
GEOTOP, Université du Québec à Montréal, Quebec, Canada
Erling Krogh Ravna
Affiliation:
Department of Geology, University of Tromsø, N-9037 Tromsø, Norway
Morten Hald
Affiliation:
Department of Geology, University of Tromsø, N-9037 Tromsø, Norway
Claude Hillaire-Marcel
Affiliation:
GEOTOP, Université du Québec à Montréal, Quebec, Canada
*
Corresponding author. Email Address:katarzyna.zamelczyk@uit.no

Abstract

A deep-sea sediment core covering the last 20 ka and located between the Polar and the Arctic fronts in the marginal ice zone (MIZ) of the central Fram Strait has been investigated for changes in paleoceanography and calcium carbonate preservation. The reconstruction is based on the distribution patterns of planktic foraminifera, mean shell weight and the degree of fragmentation of their shells, stable isotopes and other geochemical and sedimentological data. The results show that the planktic foraminifera shells are poorly preserved throughout most of the record. Only the intervals comprising the early Holocene from 10.8 to ~ 8 cal ka BP and the last 800 yr show improved preservation of CaCO3. The dissolution correlated with the extent of Arctic water and the associated marginal ice zone (MIZ) and high organic productivity. Dissolution of planktic foraminifera is generally high during the late deglaciation, mid and late Holocene prior to ~ 800 cal yr BP. The abundance of small subpolar species increases in the surface sediments dating from the last century, which could be interpreted as a large and significant surface water warming. However, this apparent high-magnitude warming seems to be overestimated due to preservation changes in the youngest sediments.

Type
Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aagaard, K., and Carmack, E.C. The role of sea ice and other fresh water in the Arctic circulation. Journal of Geophysical Research 94, 10 (1989). 1448514498.CrossRefGoogle Scholar
Archer, D., and Maier-Reimer, E. Effect of deep-sea sedimentary calcite preservation on atmospheric CO2 concentration. Nature 367, (1994). 260263.CrossRefGoogle Scholar
Archer, D., Emerson, S., and Reimers, C. Dissolution of calcite in deep-sea sediments: pH and O2 microelectrode results. Geochimica et Cosmochimica Acta 53, 11 (1989). 28312845.CrossRefGoogle Scholar
Barker, S., and Elderfield, H. Foraminiferal calcification response to glacial–interglacial changes in atmospheric CO2 . Science 297, (2002). 833 http://dx.doi.org/10.1126/science.1072815 CrossRefGoogle ScholarPubMed
Bauch, H.A., Erlenkeuser, H., Spielhagen, R.F., Struck, U., Matthiessen, J., Thiede, J., and Heinemeier, J. A multiproxy reconstruction of the evolution of deep and surface waters in the subarctic Nordic seas over the last 30,000 yr. Quaternary Science Reviews 20, (2001). 659678. http://dx.doi.org/10.1016/S0277-3791(00)00098-6 CrossRefGoogle Scholar
, A.W.H., and Tolderlund, D.S. Distribution and ecology of living planktonic foraminifera in surface waters of the Atlantic and Indian Oceans. Funnel, B.M., and Riedel, W.R. The Micropaleontology of the Oceans. (1971). Cambridge University Press, London. 105149.Google Scholar
Berger, W.H. Planktonic foraminifera: selective solution and paleoclimatic interpretation. Deep Sea Research and Oceanographic Abstracts 15, 1 (1968). 3143.CrossRefGoogle Scholar
Berger, W.H. Planktonic foraminifera: selective solution and the lysocline. Marine Geology 8, 2 (1970). 111138.CrossRefGoogle Scholar
Berger, W.H. Sedimentation of planktonic Foraminifera. Marine Geology 11, 5 (1971). 325358.CrossRefGoogle Scholar
Berger, W.H., and Killingley, J.S. Glacial-Holocene transition in deep-sea carbonates: selective dissolution and the stable isotope signal. Science 197, (1977). 563566.CrossRefGoogle ScholarPubMed
Birgel, D., and Hass, H.C. Oceanic and atmospheric variations during the last deglaciation in the Fram Strait (Arctic Ocean): a coupled high-resolution organic-geochemical and sedimentological study. Quaternary Science Reviews 23, 1–2 (2004). 2947. http://dx.doi.org/10.1016/j.quascirev.2003.10.001 CrossRefGoogle Scholar
Birgel, D., Stein, R., and Hefter, J. Aliphatic lipids in recent sediments of the Fram Strait/Yermak Plateau (Arctic Ocean): composition, sources and transport processes. Marine Chemistry 88, 3–4 (2004). 127160. http://dx.doi.org/10.1016/j.marchem.2004.03.006 CrossRefGoogle Scholar
Birks, H.H., Gulliksen, S., Haflidason, H., Mangerud, J., and Possnert, G. New radiocarbon dates for the Vedde Ash and the Saksunarvatn Ash from western Norway. Quaternary Research 45, 2 (1996). 119127.CrossRefGoogle Scholar
Bonnet, S., de Vernal, A., Henry, M., Bauch, H., Husum, K., Spielhagen, R., Van Nieuwenhove, N., and Zamelczyk, K. Variability of hydrographic conditions and sea-ice in the Nordic Seas during the Holocene. 41st International Arctic Workshop, March 2–4. Montreal, Canada. (2011). Google Scholar
Bourke, R.H., Weigel, A.M., and Paquette, R.G. The Westward Turning Branch of the West Spitsbergen Current. Journal of Geophysical Research 93, 11 (1988). 1406514077.CrossRefGoogle Scholar
Broecker, W.S. Calcite accumulation rates and glacial to interglacial changes in oceanic mixing. Turekian, K.K. The Late Cenozoic Glacial Ages. (1971). Yale University Press, New Haven, Conn.. 239265.Google Scholar
Broecker, W.S., and Clark, E. An evaluation of Lohmann's foraminifera weight index. Paleoceanography 16, (2001). 531534. http://dx.doi.org/10.1029/2000PA000600 CrossRefGoogle Scholar
Bronk Ramsey, C. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 1 (2009). 337360.CrossRefGoogle Scholar
Brown, S.J., and Elderfield, H. Variations in Mg/Ca and Sr/Ca ratios of planktonic foraminifera caused by postdepositional dissolution: evidence of shallow Mg dependent dissolution. Paleoceanography 11, 5 (1996). 543551.CrossRefGoogle Scholar
Carstens, J., and Wefer, G. Recent distribution of planktonic foraminifera in the Nansen Basin, Arctic Ocean. Deep Sea Research Part A: Oceanographic Research Papers 39, 2 (1992). 507524. Part 1 CrossRefGoogle Scholar
Carstens, J., Hebbeln, D., and Wefer, G. Distribution of planktic foraminifera at the ice margin in the Arctic (Fram Strait). Marine Micropaleontology 29, 3–4 (1997). 257269.CrossRefGoogle Scholar
Chen, C. Pleistocene pteropods in pelagic sediments. Nature 219, (1968). 11451149.CrossRefGoogle Scholar
Conan, S.M.-H., Ivanova, E.M., and Brummer, G.-J.A. Quantifying carbonate dissolution and calibration of foraminiferal dissolution indices in the Somali Basin. Marine Geology 182, 3–4 (2002). 325349. http://dx.doi.org/10.1016/S0025-3227(01)00238-9 CrossRefGoogle Scholar
Darling, K.F., Kucera, M., Kroon, D., and Wade, C.M. A resolution for the coiling direction paradox in Neogloboquadrina pachyderma . Paleoceanography 21, (2006). PA2011 http://dx.doi.org/10.1029/2005PA001189 CrossRefGoogle Scholar
de Villiers, S. Occupation of an ecological niche as the fundamental control on the shell weight of calcifying planktonic foraminifera. Marine Biology 144, 1 (2004). 4550. http://dx.doi.org/10.1007/s00227-003-1183-8CrossRefGoogle Scholar
Dugmore, A.J., Larsen, G., and Newton, A.J. Seven tephra isochrones in Scotland. The Holocene 5, (1995). 257266.CrossRefGoogle Scholar
Duplessy, J.C., Labeyrie, L., Paterne, M., Hovine, S., Fichefet, T., Duprat, J., and Labracherie, M. High latitude deep water sources during the Last Glacial Maximum and the intensity of the global oceanic circulation. Wefer, G., Berger, W.H., Siedler, G., and Webb, D.J. The South Atlantic. (1996). Springer-Verlag, Berlin. 445460.Google Scholar
Emerson, S.R., and Archer, D. Calcium carbonate preservation in the ocean. Philosophical Transactions of the Royal Society of London A331, (1990). 2940.Google Scholar
Emerson, S., and Bender, M. Carbon fluxes at the sediment-water interface of the deep-sea: calcium carbonate preservation. Journal of Marine Research 39, (1981). 139162.Google Scholar
Espitalié, J., Laporte, J.L., Madec, M., Marquis, F., Leplat, P., Paulet, J., and Boutefeu, A. Méthode rapide de characterisation des roches-mere, de leur potential petrolier et de leur degre d'évolution. Revue de l'Institute Francais du Petrole 32, (1977). 2342.CrossRefGoogle Scholar
Fairbanks, R.G. A 17,000-year glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature (London) 342, (1989). 637642. http://dx.doi.org/10.1038/342637a0 CrossRefGoogle Scholar
Fujioka, K. Synthesis of Neogene explosive volcanism of the Tohoku arc, deduced from marine tephra drilled around the Japan Trench region, Deep Sea Drilling Project Legs 56, 57, and 87B. Kagami, H., Karig, D.E., Coulbourn, W.T. et al. Initial Reports. DSDP 87, (1986). U.S. Governmental Printing Office, Washington. 703723.Google Scholar
Gonzalez-Mora, B., Sierro, F.J., and Flores, J.A. Controls of shell calcification in planktonic foraminifers. Quaternary Science Reviews 27, (2008). 956961. http://dx.doi.org/10.1016/j.quascirev.2008.01.008 CrossRefGoogle Scholar
Gradinger, R.R., and Baumann, M.E.M. Distribution of phytoplankton communities in relation to the large-scale hydrographical regime in the Fram Strait. Marine Biology 111, 2 (1991). 311321.CrossRefGoogle Scholar
Haflidason, H., Eiriksson, J., and Kreveld, S.V. The tephrochronology of Iceland and the North Atlantic region during the Middle and Late Quaternary: a review. Journal of Quaternary Science 15, 1 (2000). 322.3.0.CO;2-W>CrossRefGoogle Scholar
Hall, V.A., Pilcher, J.R., and McCormac, F.G. Icelandic volcanic ash and the mid-Holocene Scots pine (Pinus sylvestris) decline in the north of Ireland: no correlation. The Holocene 4, (1994). 7983.CrossRefGoogle Scholar
Hebbeln, D. Flux of ice-rafted detritus from sea ice in the Fram Strait. Deep Sea Research Part II: Topical Studies in Oceanography 47, 9–11 (2000). 17731790. http://dx.doi.org/10.1016/S0967-0645(00)00006-0 CrossRefGoogle Scholar
Hebbeln, D., and Berner, H. Surface sediment distribution in the Fram Strait. Deep Sea Research Part I: Oceanographic Research Papers 40, 9 (1993). 17311745.CrossRefGoogle Scholar
Hebbeln, D., Henrich, R., and Baumann, K.-H. Paleoceanography of the last interglacial/glacial cycle in the Polar North Atlantic. Quaternary Science Reviews 17, 1 (1998). 125153.CrossRefGoogle Scholar
Hecht, A.D., Eslinger, E.V., and Garmon, L.B. Experimental studies on the dissolution of planktonic foraminifera. Sitter, W.V., Be, A.W.H., and Berger, W.H. Dissolution of Deep-sea Carbonates. (1975). Cushman Foundation for Foraminiferal Research, 59–69 Google Scholar
Hemleben, C., and Spindler, M. Recent advances in research on living planktonic foraminifera. Utrecht micropalaeontological Bulletin 30, (1983). 141170.Google Scholar
Hemleben, C., Spindler, M., and Anderson, O.R. Modern Planktonic Foraminifera. (1989). Springer-Verlag, New York. 363 Google Scholar
Henrich, R., Baumann, K.-H., Huber, R., and Meggers, H. Carbonate preservation records of the past 3 Myr in the Norwegian-Greenland Sea and the northern North Atlantic: implications for the history of NADW production. Marine Geology 184, 1–2 (2002). 1739.CrossRefGoogle Scholar
Hirche, H.-J., Baumann, M.E.M., Kattner, G., and Gradinger, R. Plankton distribution and the impact of copepod grazing on primary production in Fram Strait, Greenland Sea. Journal of Marine Systems 2, (1991). 477494.CrossRefGoogle Scholar
Hop, H., Falk-Petersen, S., Svendsen, H., Kwasniewski, S., Pavlov, V., Pavlova, O., and Søreide, J.E. Physical and biological characteristics of the pelagic system across Fram Strait to Kongsfjorden. Progress in Oceanography 71, (2006). 182231. http://dx.doi.org/10.1016/j.pocean.2006.09.007 CrossRefGoogle Scholar
Huber, R., Meggers, H., Baumann, K.-H., and Henrich, R. Recent and Pleistocene carbonate dissolution in sediments of the Norwegian-Greenland Sea. Marine Geology 165, (2000). 123136. http://dx.doi.org/10.1016/S0025-3227(99)00138-3 CrossRefGoogle Scholar
Husum, K. Cruise report JM06-WP: Marine Geological Cruise to West Spitsbergen Margin and Fram Strait. Department of Geology. (2006). University of Tromsø, Norway.Google Scholar
Jakobsson, M., Macnab, R., Mayer, L., Anderson, R., Edwards, M., Hatzky, J., Schenke, H.-W., and Johnson, P. An improved bathymetric portrayal of the Arctic Ocean: implications for ocean modeling and geological, geophysical and oceanographic analyses. Geophysical Research Letters 35, (2008). L07602 http://dx.doi.org/10.1029/2008GL033520 CrossRefGoogle Scholar
Jennings, A.E., Grönvold, K., Hilberman, R., Smith, M., and Hald, M. High-resolution study of Icelandic tephras in the Kangerlussuaq Trough, southeast Greenland, during the last deglaciation. Journal of Quaternary Science 17, 8 (2002). 747757. http://dx.doi.org/10.1002/jqs.692 CrossRefGoogle Scholar
Koç, N., Jansen, E., and Haflidason, H. Palaeoceanographic reconstructions of surface conditions in the Greenland, Iceland and Norwegian Seas through the last 14 ka based on diatoms. Quaternary Science Reviews 12, 2 (1993). 115140.CrossRefGoogle Scholar
Ku, T.L., and Oba, T. A method of quantitative evaluation of calcite dissolution in deep-sea sediments and its application to paleoceanographic reconstruction. Quaternary Research 10, (1978). 112129.CrossRefGoogle Scholar
Kvamme, T., Mangerud, J., Furnes, H., and Ruddiman, W.F. Geochemistry of Pleistocene ash zones in cores from the North Atlantic. Norsk Geologisk Tidskrift 69, (1989). 251272.Google Scholar
Lohmann, G.P. A model for variation in the chemistry of planktonic foraminifera due to secondary calcification and selective dissolution. Paleoceanography 10, 3 (1995). 445457.CrossRefGoogle Scholar
Mangerud, J., Lie, S.E., Furnes, H., Kristiansen, I.L., and Lømo, L. A Younger Dryas ash bed in western Norway, and its possible correlations with tephra in cores from the Norwegian Sea and the North Atlantic. Quaternary Research 21, 1 (1984). 85104.CrossRefGoogle Scholar
Marchal, O., Cacho, I., Stocker, T.F., Grimalt, J.O., Calvo, E., Martrat, B., Shackleton, N.J., Vautravers, M., Cortijo, E., van Kreveld, S.A., Andersson, C., Koç, N., Chapman, M.R., Sbaffi, L., Duplessy, J.C., Sarnthein, M., Turon, J.L., Duprat, J., and Jansen, E. Apparent long-term cooling of the sea surface in the northeast Atlantic and Mediterranean during the Holocene. Quaternary Science Reviews 21, 4–6 (2002). 455483. http://dx.doi.org/10.1016/S0277-3791(01)00105-6 CrossRefGoogle Scholar
Marnela, M., Rudels, B., Olsson, K.A., Anderson, L.G., Jeansson, E., Torres, D.J., Messias, M.J., Swift, J.H., and Watson, A.J. Transports of Nordic Seas water masses and excess SF6 through Fram Strait to the Arctic Ocean. Progress in Oceanography 78, 1 (2008). 111. http://dx.doi.org/10.1016/j.pocean.2007.06.004 CrossRefGoogle Scholar
Mercer, J.H. A former ice sheet in the Arctic Ocean?. Palaeogeography, Palaeoclimatology, Palaeoecology 8, 1 (1970). 1927.CrossRefGoogle Scholar
Monnin, E., Steig, E.J., Siegenthaler, U., Kawamura, K., Schwander, J., Stauffer, B., Stocker, T.F., Morse, D.L., Barnola, J.-M., Bellier, B., Raynaud, D., and Fischer, H. Evidence for substantial accumulation rate variability in Antarctica during the Holocene, through synchronization of CO2 in the Taylor Dome, Dome C and DML ice cores. Earth and Planetary Science Letters 224, (2004). 4554. http://dx.doi.org/10.1016/j.epsl.2004.05.007 CrossRefGoogle Scholar
Moy, A.D., Howard, W.R., Bray, S.G., and Trull, T.W. Reduced calcification in modern Southern Ocean planktonic foraminifera. Nature Geoscience 2, (2009). 276280. http://dx.doi.org/10.1038/ngeo460 CrossRefGoogle Scholar
Nørgaard-Pedersen, N., Spielhagen, R.F., Thiede, J., and Kassens, H. Central Arctic surface ocean environment during the past 80,000 years. Paleoceanography 13, 2 (1998). 193204.CrossRefGoogle Scholar
Nørgaard-Pedersen, N., Spielhagen, R.F., Erlenkeuser, H., Grootes, P.M., Heinemeier, J., and Knies, J. Arctic Ocean during the Last Glacial Maximum: Atlantic and polar domains of surface water mass distribution and ice cover. Paleoceanography 18, 3 (2003). 1063 http://dx.doi.org/10.1029/2002PA000781 CrossRefGoogle Scholar
Parker, F.L., and Berger, W.H. Faunal and solution patterns of planktonic foraminifera in surface sediments of the South Pacific. Deep Sea Research and Oceanographic Abstracts 18, 1 (1971). 73107.CrossRefGoogle Scholar
Rasmussen, S.O., Andersen, K.K., Svensson, A.M., Steffensen, J.P., Vinther, B.M., Clausen, H.B., Siggaard-Andersen, M.-L., Johnsen, S.J., Larsen, L.B., Dahl-Jensen, D., Bigler, M., Röthlisberger, R., Fischer, H., Goto-Azuma, K., Hansson, M.E., and Ruth, U. A new Greenland ice core chronology for the last glacial termination. Journal of Geophysical Research-Atmospheres 111, (2006). D06102 http://dx.doi.org/10.1029/2005JD006079 CrossRefGoogle Scholar
Rasmussen, T.L., Thomsen, E., Ślubowska, M.A., Jessen, S., Solheim, A., and Koç, N. Paleoceanographic evolution of the SW Svalbard margin (76°N) since 20,000 14C yr BP. Quaternary Research 67, 1 (2007). 100114. http://dx.doi.org/10.1016/j.yqres.2006.07.002 CrossRefGoogle Scholar
Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk Ramsey, C., Buck, C.E., Burr, G.S., Edwards, R.L., Friedrich, M., Grootes, P.M., Guilderson, T.P., Hajdas, I., Heaton, T.J., Hogg, A.G., Hughen, K.A., Kaiser, K.F., Kromer, B., McCormac, F.G., Manning, S.W., Reimer, R.W., Richards, D.A., Southon, J.R., Talamo, S., Turney, C.S.M., van der Plicht, J., and Weyhenmeyer, C.E. IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51, 4 (2009). 11111150. http://dx.doi.org/10.1029/2005JD006079 D06102 CrossRefGoogle Scholar
Ruddiman, W.F., and Glover, L.K. Vertical Mixing of Ice-Rafted Volcanic Ash in North Atlantic Sediments. Geological Society of America, GSA Bulletin 83, 9 (1972). 28172836.CrossRefGoogle Scholar
Rudels, B., and Quadfasel, D. Convection and deep water formation in the Arctic Ocean-Greenland Sea System. Journal of Marine Systems 2, 3–4 (1991). 435450.CrossRefGoogle Scholar
Sarnthein, M., van Kreveld, S., Erlenkeuser, H., Grootes, P.M., Kucera, M., Pflaumann, U., and Schulz, M. Centennial-to-millennial-scale periodicities of Holocene climate and sediment injections off the western Barents shelf, 75°N. Boreas 32, (2003). 447461.Google Scholar
Schauer, U., Fahrbach, E., Osterhus, S., and Rohardt, G. Arctic warming through the Fram Strait: Oceanic heat transport from 3 years of measurements. Journal of Geophysical Research 109, 14 (2004). C06026 http://dx.doi.org/10.1029/2003JC001823 CrossRefGoogle Scholar
Scott, D.B., Schell, T., Rochon, A., and Blasco, S. Modern benthic foraminifera in the surface sediments of the Beaufort Shelf, slope and Mackenzie Trough, Beaufort Sea, Canada: taxonomy and summary of surficial distributions. Journal of Foraminiferal Research 38, (2008). 228250.CrossRefGoogle Scholar
Smith, W.O. Jr., and Sakshaug, E. Polar Phytoplankton. Smith, W.O. Jr. Polar Oceanography, Part B: Chemistry, Biology and Geology. (1990). Academic Press, New York. 477525.Google Scholar
Smith, W.O. Jr., Baumann, M.E.M., Wilson, D.L., and Aletsee, L. Phytoplankton biomass and productivity in the marginal ice zone of the Fram Strait during summer 1984. Journal of Geophysical Research 92, 7 (1987). 67776786.CrossRefGoogle Scholar
Spielhagen, R.F., Werner, K., Aagaard-Sørensen, S., Zamelczyk, K., Kandiano, E., Budeus, G., Husum, K., Marchitto, T., and Hald, M. Enhanced modern heat transfer to the Arctic by warm Atlantic Water. Science 331, (2011). 450453. http://dx.doi.org/10.1126/science.1197397 CrossRefGoogle Scholar
Srinivasan, M.S., and Kennett, J.P. Secondary calcification of the planktonic foraminifer Neogloboquadrina pachyderma as a climatic index. Science 186, 4164 (1974). 630632.CrossRefGoogle ScholarPubMed
Stuiver, M., Reimer, P.J., Bard, E., Beck, J.W., Burr, G.S., Hughen, K.A., Kromer, B., McCormac, G., Van Der Plicht, J., and Spurk, M. INTCAL98 radiocarbon age calibration 24,000-0 cal BP. Radiocarbon 40, 3 (1998). 10411083.CrossRefGoogle Scholar
Svensson, A., Andersen, K.K., Bigler, M., Clausen, H.B., Dahl-Jensen, D., Davies, S.M., Johnsen, S.J., Muscheler, R., Parrenin, F., Rasmussen, S.O., Röthlisberger, R., Seierstad, I., Steffensen, J.P., and Vinther, B.M. A 60 000 year Greenland stratigraphic ice core chronology. Climate of the Past 4, (2008). 4757. http://dx.doi.org/10.5194/cp-4-47-2008 CrossRefGoogle Scholar
Swift, J.H., and Aagaard, K. Seasonal transitions and water mass formation in the Iceland and Greenland seas. Deep Sea Research Part A. Oceanographic Research Papers 28, 10 (1981). 11071129.CrossRefGoogle Scholar
Tarasov, L., and Peltier, W.R. Arctic freshwater forcing of the Younger Dryas cold reversal. Nature 435, (2005). 662665. http://dx.doi.org/10.1038/nature03617 CrossRefGoogle ScholarPubMed
Thompson, P.R., and Saito, T. Pacific Pleistocene sediments: planktonic foraminifera dissolution cycles and geochronology. Geology 2, 7 (1974). 333335.2.0.CO;2>CrossRefGoogle Scholar
Thunell, R.C. Optimum indices of calcium carbonate dissolution, in deep-sea sediments. Geology 4, 9 (1976). 525528.2.0.CO;2>CrossRefGoogle Scholar
Turney, C.S.M., Harkness, D.D., and Lowe, J.J. The use of microtephra horizons to correlate Late-glacial lake sediment successions in Scotland. Journal of Quaternary Science 12, 6 (1997). 525531.3.0.CO;2-M>CrossRefGoogle Scholar
Vinje, T.E. Sea ice conditions in the European sector of the marginal seas of the Arctic 1966–75. Norwegian Polar Institut 1975, (1977). 163174.Google Scholar
Walczowski, W., Piechura, J., Osiński, R., and Wieczorek, P. The West Spitsbergen Current volume and heat transport from synoptic observations in summer. Deep Sea Research Part I: Oceanographic Research Papers 52, 8 (2005). 13741931. http://dx.doi.org/10.1016/j.dsr.2005.03.009 CrossRefGoogle Scholar
Wastegård, S., Björck, S., Possnert, G., and Wohlfarth, B. Evidence for the occurrence of Vedde Ash in Sweden: radiocarbon and calendar age estimates. Journal of Quaternary Science 13, 3 (1998). 271274.3.0.CO;2-4>CrossRefGoogle Scholar
Weinelt, M., Vogelsang, E., Kucera, M., Pflaumann, U., Sarnthein, M., Voelker, A., Erlenkeuser, H., and Malmgren, B.A. Variability of North Atlantic heat transfer during MIS 2. Paleoceanography 18, 3 (2003). 1071 http://dx.doi.org/10.1029/2002PA000772 CrossRefGoogle Scholar
Werner, K., Spielhagen, R.F., Kandiano, E., Bauch, D., Hass, H.C., and Zamelczyk, K. Atlantic Water advection to the eastern Fram Strait- multiproxy evidence for late Holocene variability. Palaeogeography, Palaeoclimatology, Palaeoecology 308, 3–4 (2011). 264276. http://dx.doi.org/10.1016/j.palaeo.2011.05.030 CrossRefGoogle Scholar